
Mevolution
- Smart Research -

Summer, 2024

Abstract

Traditionally, Miner Extractable Value (MEV) has been viewed as a

challenge, where miners or validators exploit arbitrage opportunities

through creative block production techniques. The options have been to

either combat MEV by limiting opportunities or embrace it by

introducing fairness into block production politics. This paper explores

a third approach: leveraging the concept of time in blockchain

transactions. By transitioning from a sequential model to a flexible time

model, we can engineer radical new transaction semantics. These new

spatio-temporal dimensions of MEV inspired transactions framework

opens up novel possibilities of building L1.5 technologies and hybrid

Dapps by leveraging MEV-time Oracles.

1. Introduction: MEV and Its Evolution

Traditionally, MEV has been thought of as a problem dealing with

miners/validators exploiting arbitrage opportunities by being creative

in their block production mechanisms and techniques. Currently, there

exists only two options broadly construed, either fight the MEV by

creating ways to limit MEV opportunities or to embrace it and create

new ways of bringing back fairness in the block production politics for it

is but inevitable, the MEVolution is here. What is underlying these

options is the framing of greed once available becomes irresistible. This

makes it a design choice between greed versus fairness, how best to

strike the delicate balance, and how to introduce other forces in this

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 1/41

picture so as to enlighten the dark forest. These new forces come in the

forms of cryptoeconomic mechanisms that have been proposed, most of

which, leveraging the PBS and Flashbots research.

There is another way of looking at it. This is the Question and the

Concept of Time. Specifically, how it plays out in models of consensus,

as is evident in the original name given by Nakamoto for blockchain:

timechain. MEV has opened up the plasticity of time in Ethereum.

In this paper, we propose a solution to the double-spending

problem using a peer-to-peer distributed timestamp server to

generate computational proof of the chronological order of

transactions.

— Nakamoto S., Bitcoin: A Peer-to-Peer Electronic Cash System,

2008 [Highlight by the authors]

The change in blockchain transactions' ordering and execution model

from a sequential one to one that reflects a flexible time, as exhibited

and exposed by MEV searchers, lets us imagine and engineer radical

new transaction semantics. Specifically, transactions can now validate

values provided to them by searchers (via transactions infrastructure),

reverting when validation fails. Such programmable atomicity (or semi-

atomicity and its many variants) exemplify the fact that blockchains are

technologies of time.

For example, consider a "smart" transaction pattern where searchers

provide valid oracle values to a transaction or else the transaction

reverts. This can be used to implement parameterized function calls,

allowing searchers to more directly solve and search/optimize

transactions. It can also be used to provide signed data to transactions,

including off-chain price information or additional third-party

transaction validation.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 2/41

For another example, consider a pattern where searchers must provide

values from the future, under the logic that the transaction reverts if it

finds a different value when it finally arrives at this future point of its

execution. This pattern is leveraged by our transactions infrastructure

(See §7) called the callbreaker , which has searchers front the return

values of the callobjects (aka internal transactions) that are

executed by the breaker as a bundle. It can also be leveraged in the time

turner , through which searchers front entire callobjects from the

future.

Blockchain transactions exist in space and time. The former being the

space in the block it is included in, of the chain that such a block is

further part of, of the space of the validation logic that legitimizes it to

be even considered by the validators/proposers/blockbuilders for

inclusion in the current block. The temporalities of blockchain

transactions can be expressed in the lifecycle of every transaction in

terms of the following three modalities:

Past Tense: Confirmed transactions permanently recorded on the blockchain.
They remain in the past frozen, impossible to be tampered with as are all
things past, as operating under the immutability logic of ever deepening
cumulative confirmation by consensus.

Future Tense: Pending/proposed transactions in the mempool awaiting
inclusion in a block. All transactions and requests for transactions once left the
wallet and user apps being broadcast node to node as they await to be picked
up by searchers/builders/proposers to be worked. In the mempool they remain
as potentialities for a future where they might be confirmed.

Present Tense: The transitional time between past and present when
transactions are being executed in an effort to confirm them onchain. This is
the time when transactions are being picked up, searched/solved, validated
and bundled/sorted into blocks by miners or validators/proposers.

As per Nakamoto consensus, the unwritten law of the present tense was

that, as long as they are valid transactions, a miner should give them

priority for inclusion based only on the amount of transaction fees they

pay, informally prohibiting other attempts to interact with the

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 3/41

transactions as amounting to tampering the sanctity of temporal purity.

"Replace-by-fee" was a controversial Bitcoin soft protocol change,

allowing transactions that are in the mempool or already in miners'

blocks to be replaced by other mutually exclusive transactions that pay

higher fees. That could lead to miners reading the contents of the

transactions and selecting new transactions based on their preferred

UTXO update or worse leading to censorship. Miners had to act in a

passive way, never actively interacting with transactions, just follow the

fee based allocation of blockspace for valid transactions, adding no

flavor of their own.

This assumption that miners were passive actors during transaction

execution changed for the first time with MEV on Ethereum: ETH

miners started interacting with the blockspace by manipulating the

order of transactions, giving preferential inclusion to low latency

traders who were competing for arbitrage and other trading

opportunities by "tipping" or "bribing" miners directly for inclusion.

With MEV, miners transitioned from passive to an active mode in the

present tense modality of transaction lifecycle. MEV remains to be most

radical (change) departure in the temporality of transaction lifecycle in

the life of the "timechain" [Nakamoto]. Thus, we get two further

delineations under the Present Tense modality of our three transaction

temporalities:

Present Passive: Transactions are executed without any significant third-party
interpretation of their internal or implicit semantics beyond validity and
transaction fees. This was the only mode of temporality as per Nakamoto
Consensus.

Present Active: Transactions are executed after an extensive search over
different possible inclusions in different bundles with other third-party
transactions, not simply based on their own independent validity and
transaction fees paid. In the case of trades/swaps these bundles typically
include the transactions of adversary traders, or of the miner/proposer
themselves. This mode of temporality was made possible solely due to MEV.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 4/41

Past Present Future

Passive Confirmed
Tx

Nakamoto Miners / Proposers in
PBS

Mempool
Tx

Active BTC Scripts Validators carrying out MEV
themselves

Searchers

Table 1

2.1. Current Attempts To Fix The Timechain

MEV represents a major disruption in the temporality of blockchain

transactions. Analysts and engineers are trying to find solutions that

will get rid of MEV or to wind back the clock on blockchain transaction

semantics. This is focused around the framing that MEV resulted in the

concentration of powers among and around validators since it made

them become the only actors to benefit from the dual power of being

able to be in the present tense and also in the active mode of interacting

with transactions. To mitigate this in an effort to ensure fairness, Vitalik

and Flashbots introduced a new set of actors, elaborating that of bundle

searchers into “builders” along with turning validators into what they

are called now “proposers” as is in the name: Proposer-Builder-Searcher.

In PBS, the powers of proposers (erstwhile validators) now supposed

have been reset back being only in the present tense (so present

passive), as was the case with Nakamoto consensus, by restricting

proposers to only be able to engage via a block builder auction. PBS

leaves the proposers with neither the power to build blocks nor to

select/organize transactions, while the searchers/solvers are now wholly

responsible with the power to actively interact with transactions. So

leaving only builders and searchers as active participants but not

present, as actively interacting with transactions in a pre-chain way.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 5/41

MEV, as an intervention with respect to the temporality and the timing

of blockchain transactions, has been largely ignored by the more

prevalent rhetoric of MEV being about trading profits/losses, greed, and

fairness. Even when the current dominant attempts at addressing the

issues of MEV was about decoupling the transaction temporalities via

PBS, this aspect around time still remains largely underdeveloped or

rarely explicated in technical analytical terms.

Temporality (about states) Timing (about relationships)

Past—Present—Future Before—After (and Now, not so much as the
midpoint insofar as it is the double negation:
as neither before, nor after)

Confirmed—BeingMined—
Mempool

Order of Transactions

Present creates the
Past/Future

Before-After creates the Now

Subjectivity
(there is no present tense
without a subject being
present)

Objective
(before-after relations are agnostic to
subjective experience)

Immutability Time Travel

Block (Re)-Ordering Transaction (Re)-Ordering

Table 2

Please note that we have been talking about two different notions as it

regards to time. The past, present and future tenses represent the

modalities in the transaction lifecycle. This is not to be confused with

the time travel reference made earlier when transactions and internal

transactions make calls to the future (within the same block/bundle) for

return values and calls to be returned, and this operates under the

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 6/41

relationship of before-after (and now). So the two notions are: past-

present-future, and before-after-now. The former speaks of

temporalities, while the latter are notions of (time in terms) of timing,

so we have temporality versus timing. This is akin to the Hellenistic

Greek notions of Chronos versus Kairos.

(The differences between the notions of Temporality and Timing carries

with it significant similarities with McTaggart’s notion of A series versus

B series as explicated in his 1908 paper, “The Unreality of Time,”

[source] in that only the A series has tense as in a universe with subjects

experiencing the time, while the B series lacks any sense of tense as in a

block universe.)

3. MEV-Time and Cross-Time Transactions

What we get with the Present Active temporality of a transaction

lifecycle, is that finally EVM based infrastructures can now be in an

interactive relationship with transactions as they are under the

confirmation process. This opens up realtime operations for the first

time in crypto, as realtime is the confluence of present and active.

However, to be precise, there was always a case for Active mode of

transaction lifecycle in crypto but not in the full spectrum as MEV has

opened up. This was the case, where for example, Bitcoin scripts once

included in the block, will later on be offchain executed by whoever

intends to claim the bitcoins associated with that script, then sending

the result in a transaction for it to be included for those coins to be

claimed/forwarded, making the active mode being possible but at a later

time of the initial transaction script being included in the chain, as also

its verification of having been executed at an earlier time than the

inclusion in the chain. There is also a similar decoupling of active from

any present modality for offchain computations that are verified later

onchain, or with rollups. But the change that MEV brought was the

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 7/41

https://www.semanticscholar.org/paper/The-Unreality-of-Time-Mctaggart/dfc0a8aa4a26b11d32d2ebf3c265ac5bc4f713c8

coming together of the active and the present, which is referred to as

realtime.

3.1. MEV-time > Blocktime

With MEV, we have realtime in terms of the temporalities of transaction

lifecycle (Chronos), as we have time travel with respect to the (timing as

now) before-after notion of transaction timing (Kairos). These two

advancements in technologies of time as the timechain, when put

together results in « hypertime = realtime + time travel ». We refer to this

as MEV-time, or MEVt.

MEV represents an evolution in the way time operates in consensus

protocols by evolving from blocktime to MEV-time. Even with the

limitations of having to wait for blocktime for confirmation, interaction

with the chain is now mid-blocktime as well, as a result of hypertime.

Searchers can interact with transactions during MEV-time by

introducing values, updating oracle data, and performing operations

within the transaction flow. This interaction breaks the traditional

atomicity of transactions, allowing for more complex and adaptive

behaviors. By leveraging MEV-time, transactions can become aware of

multiple possible futures and adjust their execution based on the most

favorable outcomes.

3.2. MEV-Time Oracles: Communicating Across Time

Traditionally, information travels in space, moving between servers,

nodes, client endpoints, and so on. Oracles exist to facilitate such

movement between blockchains and the outside world, since all

information within the chain must be verifiable, oracles act as trusted

portals for such movement in space. However, with time travel,

transactions can refer to values or calls from the future for their own

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 8/41

validation, This is information that is travelling no longer in space, as

both sides of the movement remain within the chain (even with the

same block at this development stage of our infrastructure). Rather the

information is travelling across time: since cross-time transactions do

not leave the chain, they come with the same degree of trust guarantees

on both sides of source/destination. It is a purely onchain movement of

information but with different time horizons. Thus, the terms of on

versus off chain are no longer sufficient here, as they are spatial

metaphors — on is the space inside the chain as compared to off as

outside that space.

We need new terms to refer to movement of information across time but

within the same chain. This will be the case of an oracle communicating

not between the here and the there (being the case with traditional

oracles), but between the now and the then. How about nowchain and

thenchain? How about cross-time transactions instead of cross-chain

transactions.

Since the information never leaves the chain, both sides of the here and

the now follow the same logic of verification that all onchain

information must abide by. Thus, this particular type of oracle is

working across time, or if we call it, the MEV-time Oracle. It does not

suffer from the challenges of the traditional oracle (i.e., the space

oracle), that of the trust assumption. The information of the there can

be verified onchain by the now. MEV-time Oracles are onchain oracles.

To sum it up, we can say: it is onchain oracles that act as portals for

cross-time transactions by being a pathway for data to move between

the thenchain and the nowchain since such data comes with the same

verification logic on both sides of the movement.

4. Key Concepts

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 9/41

Key Concepts, or how to reframe existing blockchain concepts in

horological ways so we can apply them to our analysis of MEV,

leveraging which we then design a horological resolution to MEV.

4.1. Trust as Timing: Timechain design insights

The question of trust is always also one of time (or, timing to be precise):

if I can go forward in time and always ensure that assertions are never

broken, that such a time travel acts as a compensation for the need to

trust. What precedes and remains inherent in the question of trust is the

question about future. This comes mostly in the form of uncertainty

and how we deal with it: what will happen in and as the future, what

does the future hold for us in terms of the promises being made in the

past as we ask this question the present.

Since it remains impossible to escape our present (see §4.3, “when we

time travel, so does our present”), the question of trust can then be

addressed when reframed in terms of our ability to travel to a transition

that come after the current one so as to be able to report back to the

current one. More specifically, this is time as timing in terms of being

the before-after relation, and not on temporality (that of the past-

present-future relationship). Timing is also the question of when exactly

does a transition happen or need to happen, for the need to fulfill an

assertion, thus trust assumptions as timing assumptions/assertions.

If we had a crystal ball to look into transitions that come after the

current one such that we could make assertions that will always

eventually come true, we would indeed inhabit a trustless universe.

This is echoed in the theme of trustlessness [“this is the first time we're

trying a decentralized, non-trust-based system”, Nakamoto] that

Nakamoto inspired in all of us, as the rationale behind the invention of

Bitcoin. Thus, the term timechain which Nakamoto used to refer to

what we now call the blockchain seems in alignment to this logic of

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 10/41

http://p2pfoundation.ning.com/xn/detail/2003008:Comment:9493

trust as a question of time. It is in this sense that we can speak of the

concept of trustlessness in terms of timing under the logic of: to always

eventually come true. (In Lamport’s framework of distributed systems,

the always-eventual aspect is the liveness guarantee, and the coming-

true is the safety guarantee [source])

Trusted third parties can then be framed as third parties that demand

our time (as patience) in order for us to be able to infer whether they

end up holding onto their promises (as an alternative to Szabo’s

framing of “Trusted Third Parties are Security Holes”, source). Thus,

when we deem a service to be untrustworthy, it is because over time it

has kept failing at holding on to its guarantees. In both cases, the need

to trust can then be translated as the need for the required time to

pass, required for us to make the justifiable inference on

trustworthiness or not. This makes the time travel argument: that if by

some magic, we could peer into a later time from our vantage point in

the here and now, that inference could be made immediately. It is in

this way that time travel removes the need to trust — by replacing

trust with facts from the future travelling back to past for a veracity

check — making our relationship toward the service appear trustless.

(more on this in §8.1)

In fact the replayability guarantee (inherent in the definition of

blockchains) states that if we go back in time and replay through all of

the confirmed transactions exactly in the order they appear on the

blockchain (block by block), we will get the same resulting blockchain.

Replayability is thus a rationale centered around the conception of the

block production being akin to the ticking of a clock: as long as we

bracket out the Leader Selection and the Transaction Selection Logic,

by just considering the confirmed transactions as they appear on the

block, each time we roll back the clock, we get the exact same chain.

This is a clock that shows the time of the day in terms of the current

block height, while also essentially leaving a trace (of provenance) of

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 11/41

https://www.cs.cornell.edu/fbs/publications/RecSafeLive.pdf
https://nakamotoinstitute.org/library/trusted-third-parties/

all of the time it had shown/ticked (in terms of the confirmed or past

blocks — the “past tense” from §2). This is the time that is always and

ultimately linear, in that no forks are allowed, as all attempted forks

ultimately and always get collapsed into the singular/canonical chain

(along with the uncles as the traces of those forks that lost, which is

the case with some consensus protocols). Replaying is, thus,

guaranteed to always and forever produce the same exact blocks all

over again every single time. In the rhetoric of crypto, this is framed as

trustlessness. This means creating a system where guarantees are so

fully enforced that our reliance on trust is unnecessary for it to

function as promised. This is largely made possible by the

replayability guarantee. Essentially, it mirrors a clockwork universe

through consensus mechanisms.

A similar argument can be made about verifiable computation, such

that we can have guarantees of what would happen if the computation

was run without actually having to run it. When a ZK Rollup produces

the proof to be anchored in the chain, verifying the proof onchain

implies that the offchain computation must have been run with the

results as implicated in the onchain proof, all of this, without the

chain needing to actually re-run the offchain computation in an

onchain way. If an L1 had to run the original computation that would

defeat the main point of offchain and expensive computation with

cheap onchain verifiability. It is in this way that we can say

blockchains also represent technologies of time compression: time

seems to move faster in the L2 than in the L1 provided that the former

can be compressed enough to be squeezed in between the

moments/ticks that make up L1.

4.2. Time Travel Works On Timing and Never on Temporality

When we mention "time travel," it is meant only in the way that time

could be represented in the before-after mode (i.e., timing), and not as

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 12/41

the mode of temporality (past-present-future). From a computational

perspective, this means that the time element of smart transactions is to

be modelled as a data structure of transitions/events such that they are

ordered in a before-after relationship. This translates to a ordered series

of ‘when’ each smart transaction exists.

This reliance on timing is due to the fact that even with going back or

forward in time, one (the user, the transactor) can only and always

remain in one's present. Where one is in time, that is the present

moment. There is no present without there being a subject present. This

is not a question of experience for even in sleep, we are where are in

time, we do not vanish from the timeline just because we are asleep or

absent minded. By presence, we mean physical presence, psychological

presence is besides the point here. The present, by being so, remains

inescapable for subjectivity or subjecthood. Where the subject, is when

the present is.

So when we time travel, so does our present. Travelling in time remains

in terms of temporality. Rather, it is implemented by changing the index

of the before-after series of happenings: transaction ordering in the

current block being produced, where a transaction belongs in a

bundle/block, from where in the current timeline is it expecting calls

and returnvalues as a condition for its execution). This is an

expression of timing and not of temporality. From a computational

perspective, this translates to reshuffling the ordering of transitions that

make up the transaction. What remains impossible via time travel in

smart transaction is reordering of blocks (aka a blockchain

reorganization or a reorg), for that would have been an exercise in time

travel with respect to transaction temporality.

(However, when we colloquially speak of going back to the past or the

future, if we reframe this with our current understanding, we are

referring to the past/future of someone else who is still in the timeline

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 13/41

we left from, someone who was in the same present as me before I left

for the past/future. In fact, this someone else usually happens to be not

another person, rather a projection of ourselves, as if a part of us is still

there in the timeline I used to live in prior to my time travel.)

4.3. Time Travel Does Not Break Immutability

No time travelling transaction can go back beyond the current block,

that is, to one of the confirmed blocks. However, it can go forward to a

block that is not been confirmed, be it the current one in the middle of it

being produced, or one that is to come later, by having the transaction

remain in an onchain waiting station ready to be picked up by a Solver

based on timing assumptions being true. This is key to the rationale

behind virtualizing the mempool, as is the case with our infrastructure

(see §7). This entails holding the mempool onchain rather than the

usual way of prechain mempool. This is carried out by storing the

new/pending transitions onchain. While waiting to be picked up is one

aspect of timing, the other one is also around locks and partial

isolations for transactions to be able to manage their side-effects — this

is the logic behind atomicity, and to be precise version of it, that of

semi-atomicity. Atomicity remains fundamental as a property for the

safety of a transaction execution, even in the case of time travelling

transactions.

This means, with time travelling transactions, the infrastructure should

be able to change (such as, when deciding to commit a transition or to

rollback -and-retry) a before transition/event based on validating what

comes after (returnvalues or calls), but must at all costs be barred

from being able to change the past. Since the past represents confirmed

transactions, we would have to be able to reorder confirmed blocks —

that is definitely not conceptually possible and remains technically

impermissible by what we mean by and how we design our time travel

infrastructure. It is rather searchers reshuffling the before-after

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 14/41

relationships of transaction ordering towards optimizing the most MEV.

In fact this is where we see the great confluence of the blockchain

immutability regime and the replayability guarantee: the latter ensures

that we can always go back to the past, while the former prevents us

from being able to change the past when we are in it. And now with

smart transactions, transactions can travel to before and after places in

the timeline to change the ordering of transactions being currently

solved.

This is how we resolve the paradox of immutability with respect to time

travelling transactions, since we:

can traverse back to past blocks
and replay the past (as replayability operates under temporality)

but never be able to change the past (as immutability operates under
temporality)

yet we can change before-after relationships between transactions (this is time
travel as it operates under timing).

Thus, time travel happens with respect to timing (going back to a before

or an after, searchers reshuffling the ordering of transactions), while

immutability is a matter of temporality, in that the past/confirmed

transaction can never changed (Refer to Table 2). Therefore, contrary to

popular opinion, time travel does not break immutability.

Time Travel’s reliance on the before-after model is in line with Leslie

Lamport’s 1978 inaugural work on distributed systems where he framed

the question of coordination as one of being able to synchronize around

the differing before-after sequences of the nodes of the network; this

was his paper on logical clocks. This reliance on timing over temporality

as a design criteria is also reflected in Nakamoto’s design of the “peer-to-

peer distributed timestamp server” as stated in the Bitcoin Whitepaper.

In this paper, we discuss the partial ordering defined by the

"happened before" relation, and give a distributed algorithm for

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 15/41

https://amturing.acm.org/p558-lamport.pdf
https://amturing.acm.org/p558-lamport.pdf
https://nakamotoinstitute.org/library/bitcoin/

extending it to a consistent total ordering of all the events. This

algorithm can provide a useful mechanism for implementing a

distributed system. We illustrate its use with a simple method for

solving synchronization problems. Unexpected, anomalous

behavior can occur if the ordering obtained by this algorithm differs

from that perceived by the user. This can be avoided by introducing

real, physical clocks. We describe a simple method for

synchronizing these clocks, and derive an upper bound on how far

out of synchrony they can drift.

- Leslie Lamport, 1978, “Time, Clocks, and the Ordering of Events in

a Distributed System”

4.4. Cryptoeconomics of Time Travel

The logic behind the meme, "don't trust, verify", is one of collapsing the

twin sides of a different kind of time travel that what we discussed so

far. We refer to this as cryptoeconomic time travel (differentiating it

from the time travel using MEV oriented transaction reshuffling, that

we discussed so far).

1. Trustlessness is ‘virtual’ time travel travel to the future. To trust x — is

to have the assurance that promises that x entails will be kept. But if

we are able to visit the future, we would not need to trust, for we

would just be in presence of the events happening or not, to verify if

indeed it is trustworthy. Thus, being able to free oneself from the

burden of trust is as-if one is travelling to the future, so no trust is

needed, just direct evidence.

2. Verification of a Proof is ‘virtual’ time travel to the past. But me

verifying a proof of x signifies that the x already exists/happened for

the proof of it to be generated/there. To be able to verify means that

the proof is already there, so the event for which the proof is a stand-

in, as it already happened. It is as-if what the proof claims of what

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 16/41

happened (what happened, captured as x) is indeed true without me

physically travelling to the past, but with the same effect if I did,

which is virtual time travel to the past.

In both cases of time travel described above, the future and the past are

actual, they are not virtual. However, the travel is not actual but virtual.

No one (e.g., a computer agent, a verification engine, an user, fraud

checker) is physically leaving the present moment, so as to vanish and

reappear at a point in the past or the future. Rather, it a movement in

time by virtue of the cryptoeconomic setup, by doing so results in the

same effect of an actual time travel but without actually doing so. This

element of ‘acting as if,’ ‘by virtue of, ‘ ‘acting so but without doing so’

brings in the aspect of virtuality in terms of the time travel to actual past

and actual future.

A major difference must be pointed out. Cryptoeconomic time travel

happens on the temporality register while the transaction reordering

one is one of timing. The former is possible in spite of the objections in

§4.2 because it happens virtually and not actually, while the latter is not

a travel to past or future, but to the before or after by way of reshuffling

the before-after relationship in terms of transactions ordering.

5. Design Rationale

Design Rationale, or on what principles and guidelines are we to build a

time machine on Ethereum.

5.1. TLDR

The Current Problem underlying MEV: Discovery of the « Present and Active »
mode of Consensus

Current Solution (a la PBS): Decoupling the Present from the Active, wrt
Proposers and Searchers bring responsible for each respectively

New Solution (a la STXN): « Time Travel » — Instead of The Decoupling,
transactions can validate across time, by leveraging Future Active modes of

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 17/41

temporality. This is MEV-time. Kairos (Timing) to rescue Chronos
(Temporality).

5.2. Time Travel Infrastructure

The philosophy of smart transactions extends transaction semantics to

improve the ability of transactions to validate their execution. The basic

approach is to create a space and an interface where searchers and

smart transactions can interact, also allowing smart transactions to

interact with each other across time. Smart transactions infrastructure

should be used by searchers to provide timely and reliable information

to transactions, information based on which transactions can

conditionally revert their own execution, and also those of all

transactions bundled with them. This information might include, for

example, future return values of future transactions, amounts of gas

consumed, and oracle values.

Consider a transaction designed to swap tokens. As its first criteria, it

wants to maintain a certain slippage protection: the transaction will

search far and wide to find enough hops between many other pairs to

eventually settle such that it results in the satisfaction of the acceptable

slippage range, failing which, the transaction will revert itself. As its

second criteria, if the tokens to be swapped operate under the

conditions that adjust the execution based on realtime price data from

an oracle, then if the price moves unfavorably, the transaction can

automatically revert or adjust the swap parameters to minimize losses.

Thus, smart transactions infrastructure is to be designed in such a way

that the transactions manage their own lifecycle with the aim of

ultimately satisfying the constraints encoded in the transactions. This

demands that transactions be able to operate in MEV-time allowing

transactions to

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 18/41

self-adjust in an interactive mode with the Searchers (as these transactions are
waiting to be confirmed for the current/next block)

decide whether to execute or revert by verifying truth conditions

The infrastructure should allow for transactions to be able to inspect

neighboring transactions within the same timeframe, or on the eventual

outcomes from the future (as long as within the MEV-time horizon,

which is blocktime in most cases), or on the information from the

outside world (Oracles that run on MEV-time instead once every block).

“Smart” means being — able to adjust its execution path, manage its

lifecycle, — powered by MEV-time interactivity. Thus, we need to

design the underlying transaction infrastructure in such a way that it

facilitates interactivity.

5.3. Key Design Objectives:

1. Model Time as Timing (before-after relations) and not as Temporalities

(Past-Present-Future).

Principle: When a smart transaction exists is a question of where it is in the
sequence of before-after relationships of transitions/events.

Implementation: The time data structure must be able to unequivocally
establish the before-after sequence of transitions/events that make up the
list of all smart transactions on the system.

Example: The ordering of transactions in a bundle/block already reflects
their internal before-after relationships with respect to each other; this is
also the index for each transition, as also the ever-increasing nonce for every
attempt at sending transactions (the increasing aspect is what makes the
after be at least one more than the before).

2. Extend Transaction Semantics Over Transaction Execution

Principle: The extension of transaction semantics is a fundamental principle
that allows transactions to express conditions and preferences beyond the
linear execution of code.

Implementation: Leveraging MEV search, transactions can interact
dynamically with the context, making real-time adjustments based on the
latest available I/O and state changes.

Example: A transaction can be designed to execute only if the real-time price
data from an oracle falls within a specified range, ensuring optimal

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 19/41

conditions are met before execution.

3. Empowering Transactions to Trust-but-Verify

Principle: Ensures that if any transaction in a bundle is executed without
invalidation, all other transactions in the bundle are also executed
successfully.

Implementation: Include verification steps within transactions to check the
validity of their conditions before execution. This minimizes the risk of
fraudulent or erroneous executions.

Example: A batch of transactions includes multiple token swaps. If one swap
fails the verification, the transaction reverts, but the other valid swaps
proceed, ensuring partial execution instead of complete failure.

4. Enabling Context Awareness in Transactions

Spatial Awareness: Awareness of the current state of the blockchain,
including the mempool and blockspace context. This involves
understanding the status and details of pending transactions and the state of
the world outside the blockchain.

Implementation: Transactions are designed to adapt based on realtime
data from the blockchain and external sources, adjusting their behavior
accordingly.

Example: A transaction adjusts its gas price based on the current
congestion in the mempool, ensuring timely execution without
overpaying.

Temporal Awareness: Awareness of past, present, and future states, allowing
transactions to validate values from the future or recontextualize present
execution based on past states.

Implementation: Transactions consider temporal factors, scheduling
execution based on anticipated future events or validating conditions from
past states.

Example: A transaction can be scheduled to execute at a specific future
block height or upon receiving a particular oracle update.

Always Be Retro-fitting Prophecies To Remain Fulfilled: Transactions should
MEV-timely verify their conditions and adapt to ensure they meet their
intended outcomes, even as the blockchain state evolves.

Implementation: Embed adaptive logic within transactions to MEV-timely
check and adjust conditions to align with desired outcomes.

Example: A transaction designed to trigger an automated market maker
(AMM) adjustment MEV-timely checks oracle data and adjusts parameters
to ensure market alignment.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 20/41

5. Turning Transactions into (Virtual) Programs or Autonomous Entities /

Blurring the Boundaries Between Transactions and Contracts

Principle: Transactions are no longer static instructions but dynamic entities
that can adapt to the blockchain's state (current and future state) and
external information.

Implementation: Transactions incorporate conditional logic and verification
steps, enabling them to function autonomously and interact with multiple
contracts and data sources.

Example: A transaction can include logic to check multiple conditions,
interact with various smart contracts, and trigger additional actions based on
outcomes, similar to a smart contract's functionality.

6. Introducing Smart Transactions

Smart Transactions are Self-Adjusting and Context-Aware:

They self-adjust their performance based on assertions and performance
guarantees to be strictly enforced.

They adapt to their environment, reacting to various conditions and contexts
to optimize execution.

They will be more than just programmable; they will "know" their
surroundings and adjust accordingly.

They are supported by an underlying layer of third party searchers that provide
compute and storage services (leveraging legacy Web services frameworks) —
both reducing the liability for service provider (as they are not real providers
but extract value through smart transaction interactions with external third
parties specific to domains), but also and more importantly, provide services
that can be leveraged through API connections between itself and the Solvers
(creating links to offchain services for hybrid apps in the future).

Smart Transactions Time Travel in Blockchain: The concept of allowing

transactions to borrow from future states to optimize current outcomes.

The lifecycle of a transaction can now include temporal claims, such as

specific ordering requirements or constraints. This requires robust

validation mechanisms to ensure that future states can be reliably

accessed and utilized (See § 7.2).

Example Scenarios:

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 21/41

https://vitalik.eth.limo/general/2022/12/05/excited.html#hybrid-applications

Flash Loans: A user borrows funds, executes a trade, and repays the loan within
a single transaction, leveraging future profits for current operations.

Zero Capital Trading: Transactions utilize future gains to execute trades
without needing initial capital.

Some of the Key Features are:

Scheduled Transactions: Plan and execute transactions in the future,
considering dependencies on other events or on the outcomes of previous
transactions.

Just-In-Time Liquidity: Access funds precisely when needed, reducing the
need for large reserves. Dynamic provision of liquidity using smart contracts
that awaken based on predefined conditions. Solvers provide liquidity by
preempting race conditions and ensuring advantageous transaction
placements.

Automated Operations: Implement schedulers for periodic payments, contract
renewals, and other time-dependent actions.

Asynchronous Execution: Handle values not yet computed at the time of
transaction execution, interacting intelligently with anticipated future states.

Oracle Integration: Access to execution traces and MEV-time oracles for atomic
pre-confirmations, enhancing transaction security.

Compatibility: Designed to work with the existing Ethereum Virtual

Machine (EVM) and infrastructure, including Flashbots bundle

standards.

7. The Smart Transaction Infrastructure

Alice wants to swap tokens, ensure minimal slippage and fast

turnaround. Alice initiated her transaction by sending her request to the

Laminator . The Laminator stored it onchain, acting as a virtual

mempool. Its job was to provide spatial awareness. It understood the

current state of the blockchain, including the status of all pending

transactions. The transaction is now ready to be picked up by the Solver.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 22/41

Fig 1. Smart Transaction flow, simplified

With respect to the Laminator's virtual mempool, Alice's transaction

gets broken down by the wallet (or the equivalent frontend application

used) into smaller individual transitions that make up the entire

transaction. These are known as CallObjects , or internal

transactions. Each CallObject represents a specific part/transition of

the transaction, such as checking the token price, verifying account

balances, or executing the swap itself.

The CallBreaker interacted with the CallObjects , verifying the

truth conditions for each one. For instance, before executing the

token swap, the CallBreaker would verify that « the token price was

within the acceptable range specified by Alice » (being one of the

truth conditions). If any condition was not met, the CallBreaker

would halt the process, preventing any unintended or malicious

actions.

7.1. Avoiding The Paradoxes of Time Travel

Any infrastructure that leverages time travel must have the capacity to

handle paradoxes around changing events/transitions that further

invalidate other such events/transitions which could then lead to

invalidating the call from which the time travel was initiated. This is

another form of the classic Grandfather Paradox. In order to avoid this,

we use Deutsch’s solution around “causal consistency check” [“Closed

Timelike Curves Make Quantum and Classical Computing Equivalent”,

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 23/41

source]. This is the logic: upon return from the after/before transition,

enforcing a causal consistency check as a default for any commitment

on the call execution to be considered final, failing which, causes a

rollback followed by trying again with a different timeline such that

eventually no such causal consistency checks fail.

Transactions with Temporal Awareness: 𝑇𝑖 = (𝐶𝑖, 𝑡𝑖)

𝐶𝑖: Conditions.

𝑡𝑖: Logical times.

Oracle Function: 𝑂(𝑡) = 𝐷

Example: Time Traveling Token Swap Transaction with Causal

Consistency Check

1. Initial Transaction Definition:

𝑈ser initiates the 𝑇ransaction.

𝑈 → 𝑇init

Alice defines the transaction to swap 100 X tokens with a maximum

acceptable price of 50 USDC per token at a future date.

𝑇init = SWAP 100 X tokens in the future at 𝑡𝑓𝑢𝑡𝑢𝑟𝑒,Max Price = 50 USDC

2. Storage and Spatial Awareness: 𝐿aminator (virtual mempool) stores

the transaction onchain, providing spatial (à la blockspace)

awareness: 𝐿(𝑇init)→ 𝑇store

Stored transaction with conditions: 𝑇store = 𝑇𝑖,𝐶𝑖

3. 𝑆olver and Sequential Execution: Solver pulls the transaction

sequentially for execution (could be at a later block based on temporal

conditions: 𝑡𝑓𝑢𝑡𝑢𝑟𝑒).

𝑆(𝑇store)→ 𝑇exec

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 24/41

https://arxiv.org/abs/0808.2669

4. 𝐸xecution and 𝑉erification: Transaction is executed and verified to

check if conditions are met.

𝐸(𝑇exec)

𝑉(𝑇exec)→ {True,False}

5. Interaction with Time:
a. Check Past Conditions:

Oracle provides historical data: 𝑂(𝑡past) = 45 USDC
Condition met as 45 ≤ 50.

b. Check Future Conditions:
Oracle provides future data: 𝑂(𝑡future) = 48 USDC
Condition met as 48 ≤ 50.

Past and future conditions are 𝑉erified using MEV-Time Oracles.

𝑉(𝐶past, 𝑡past)→ 𝑂(𝑡past) = 𝐷past

𝑉(𝐶future, 𝑡future)→ 𝑂(𝑡future) = 𝐷future

6. Causal Consistency Check: Ensure the transaction does not create

paradoxes: by ensuring that the future condition does not invalidate

the past condition.

𝑉(𝑇exec) = True iff 𝑇future maintains 𝐶past

This involves finding a fixed point where the state remains consistent

over time.

Find 𝑥 such that 𝑓(𝑥) = 𝑥

7. Transaction Completion: If all conditions are met and causal

consistency constraint is maintained, the transaction is considered

completed (i.e., ready to be submitted for inclusion in the block, or an

equivalent mechanism depending on the specifics of the confirmation

logic of the chain). Otherwise, rollback and try again.

𝑇exec → 𝑇complete

7.2. The Smart Transaction Lifecycle

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 25/41

As the LaminatedProxy held the transaction onchain, and the

CallBreaker verified the conditions, the CallObjects interacted

with each other across time. This dynamic interaction was orchestrated

through the concept of MEV-time, allowing transactions to adapt and

respond in hypertime (i.e., to both real-time data and future states as

well).

The CallObjects would query oracles for the latest price data, check

gas fees, and ensure that all parts of the transaction aligned perfectly.

They communicated seamlessly, adjusting their execution paths based

on the information they received.

Once all conditions were verified and optimal conditions were met, the

CallBreaker would give the green light: the Laminator releases the

transactions from the virtual mempool, and the CallObjects execute

their tasks. If the Solvers actually optimize the transaction’s capital

performance, Alice's token swap would be completed seamlessly, with

minimal slippage and guaranteed timing.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 26/41

Fig 2. Smart Transaction lifecycle

7.2.1. Example Workflow for a Token Swap with Conditional Execution

Alice wants to swap tokens under specific conditions. She pushes her

transaction calls to the LaminatedProxy , which includes an assertion

that the solver must call a function checkBalance() to verify the trade

conditions. The solver, Bob, then executes these calls, ensuring that

Alice's conditions are met before completing the trade.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 27/41

1. Transaction Queuing: Users push a series of CallObjects (aka internal

transactions) to the LaminatedProxy with specified conditions. For example,

a user might queue a transaction to swap tokens only if certain price
conditions are met.

2. Transactions Stored Onchain: The proxy stores the internal transactions
associated with trade execution along with other internal transactions
associated with conditions/assertions.

3. Verification and Execution: The LaminatedProxy holds these transactions
until their specified conditions are satisfiable by the smart transactions solvers.
The CallBreaker executes the calls and ensures their integrity by reverting

and invalidating the bundle if 1) a call fails or if 2) a call doesn’t return the
expected return value. If the bundle is executed fully, then all included internal
transactions’ revert-conditions must have been satisfied.

Fig 3. Alice swaps tokens with Bob as Solver

Diagram Description:

1. Alice: Initiates a transaction.

2. Laminator : Manages transactions and uses push() to forward the

transaction to the LaminatedProxy .

3. LaminatedProxy : Acts as an intermediary, handling calls from users and

directing them appropriately.

4. Bob: Checks conditions and states within the system.

5. CallBreaker : Verifies conditions and safeguards the integrity of the

transaction flow. Interacts with Bob’s verification step as a final check and
authorization step before the transaction is executed.

Flow:

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 28/41

Alice’s call to the LaminatedProxy includes a transfer of 10 Token A.

The transaction asserts that Bob will make a future call to checkBalance() .

Bob pulls calls from the LaminatedProxy with verify() to ensure the
conditions are met.

The CallBreaker interacts with Bob’s verification as a final check before the

transaction is executed.

7.3. The Time Turner Mechanism

A mechanism that allows for checking and acting upon conditions in

both the past and the future. Enables interaction with future states for

temporal flexibility by embedding entire calls from the future. Basically,

the setup ensures that smart transactions consider both historical and

future states before execution, providing a robust mechanism for

temporally aware condition-based transaction management.

This is the Time Turner high-level flow:

1. EVM Execution Direction:
a. Check if in the past: A step to verify past conditions.

i. The Time Turner checks if the condition is met in the past.

b. First make a call to the past, then make call to the future: A sequential step
where past conditions are validated before future conditions.
i. If the condition in the past is met, it proceeds to execute actions related to

the past.

ii. The sequential call step first makes a call to the past and then to the future.

c. Check if in the future: A step to verify future conditions.
i. Finally, the future condition is checked before executing future-related

actions.

2. Smart Transaction Execution Direction:
This subgraph represents the ordered execution of transactions within the
smart contract system.

Each step (marked with numbers 1 to 5) represents a direction in the
transaction execution sequence/flow.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 29/41

Fig 4. Time Turner High-level flow example

7.3.1. Detailed Breakdown of The Time Turner Lifecycle

1. Initial State (Push to Past)

2. Sequential Calls

3. Future State (Push to Future)

1. Initial State (Push to Past)

User Action: The user initiates a transaction sequence and pushes it to the
LaminatedProxy .

Condition Check: This sequence includes a condition to be checked in the
past facilitated by the Time Turner .

Steps:
a. Push the first transaction to check if the condition in the past is met.

b. If the condition is met, proceed to « do stuff in the past ».

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 30/41

Fig 5. Pushing to Past: Initial State of Time Turner

2. Sequential Calls

Validation: After validating the past condition, the next step involves making
a call to the past first, followed by a call to the future.

Steps:
a. First make a call to the past using the Time Turner to validate

conditions.

b. Then make a call to the future to ensure future conditions are set up
correctly.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 31/41

Fig 6. Sequential Calls in Time Turner

3. Future State (Push to Future)

Final Check: The final sequence involves checking a condition in the future
and executing actions based on this future state.

Steps:
a. Push the second transaction to check if the condition in the future is met.

b. If the condition is met, proceed to « do stuff in the future ».

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 32/41

Fig 7. Push to Future in Time Turner

8. Beyond MEV: Smart DApps

The design of the smart transaction infrastructure must be aligned with

respect to the applications that it will be catering to. Thus, a careful

consideration of the application layer is essential for a design that is

adaptable.

Currently, all of the innovations at addressing MEV, in spite of the high

promises, ultimately almost always exclusively end up being deployed

to build better and fancier services for swaps. It usually comes wrapped

up with the framing of a DEX but at the base of it all, it is still a swap, it

still deals with liquidity provision or order books or questions of

matching efficiently counterparties. It is tragic and comic at the same

time, that behind all of the sophistication of computer science and the

complexities of cryptoeconomics, it is all at the service of: how to have

slippage protection and low gas fees for swapping tokens. In fact, to look

at the broader class of applications of and in crypto, swaps, staking,

wallets, attestations, and the various variations of these and with each

other, cover all of the use cases that are currently the most used. This is

a stark contrast with today’s dominant application usage patterns. This

is where our approach differs:

1. A (smart) transaction is not always reducible to a swap. (For example, querying
a database or uploading a file to cloud storage are transactional operations but
not swaps)

2. Solvers must be solving real life problems (including but not limited to swaps)

3. MEV-time Oracles makes syncing I/O much more immediate than the previous
limit of blocktime.

Solvers, optimizing for MEV, prioritize transactions that can be easily

verified and yield high returns. Swaps, with their clear input-output

relationships, are ideal candidates for this optimization. This dynamic

has led to an ecosystem where most onchain operations are swaps,

sidelining other potential uses of blockchain technology.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 33/41

Unless a solver also can solve real world problems, like that of finding

the most efficient route from Point A to Point B (such as for building a

taxi hailing cab onchain), then solvers are only left with solving one

task: (capital efficient) swaps. What prevents solvers to provide these

other services is the trust assumption required behind these. But with

swaps, we can establish objective functions to achieve capital efficiency

in ways we can prove the veracity of the auction mechanism used,

making it best suited to trust-minimized applications.

This is a careful design choice we make here:

1. Rather than look for a zero trust use case, we look for designing around
applications that can be decomposed into its many aspects, some of which can
be made trustless within acceptable levels. Each of these parts would act in the
form of microservices based third party searchers to provide services.

2. MEV-time allows for anchoring trust points mid block instead of the previously
possible one of the blocktime being the limit where anything that is beyond L1
(L2 and more) can be anchored, and the same for oracles for outside world
communications. Instead with MEV-time anchoring of computations that can
be in an interactive mode with the chain in almost realtime (à la just-in-time),
or with MEV-time Oracles for outside world communications. We refer to this
as L1.5

3. Smart DApps that are a hybrid leveraging the benefits of both crypto and Web
by having the third party searchers sit in between the two worlds.

Microservices based virtual service provider that anchor its I/O (such as,

by co-signing a hash of I/O data to have it MEV-timestamped) with

respect to the chain in MEV-time — that is the approach toward

building hybrid apps.

8.1. Third Party Searchers

Third Party Searchers (TPS) bridge the gap between Web and crypto by

offering services that enhance smart transactions. These services

include HTTPS connections to send/fetch data on demand, off-chain

services of web hosting, and transaction relaying. This is the aspect of

the smart transaction infrastructure that leverages services across

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 34/41

chains as also connecting beyond blockchains insofar as the trust

assumptions — when leaving the home chain, especially when it relates

to non-crypto service endpoints — can be justifiably compensated with

respect to the capital benefits from such scale for all stakeholders

involved. This would entail domain specific design and deployment of

complex incentive schemes that can ensure acceptable levels of honesty

across the stakeholders.

Fig 8. STXN Supply Chain

TPSs provide services via API connections, enabling smart transactions

to leverage Web services for future hybrid applications. There could be

multiple TPSs providing similar services in competition with each

other, such that they are in a staked service layer marketplace, where if

any provider gets caught providing faulty service could be punished.

However, TPSs are not real providers but extract value through

interactions with external third parties, reducing their liability.

They operate by making API endpoints where a HTTPS query is replied

with a JSON object, such that the HTTPS Session and the crypto

transaction lifecycle can be mutually incentivized. They are a bridge

between Web and crypto, made possible largely due to the discovery of

MEV-time, since it opened the possibility of I/O and onchain

verifiability that does not have to wait for blocktime but can sync

immediately between the worlds of crypto and Web. This opens up the

possibility of building Hybrid DApps that leverage services between

these worlds.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 35/41

Ethereum [...] also opens the door to whole new kinds of

applications that have never been seen before.

— ethereum.org on the WayBackMachine from 2014.

8.2. Hybrid (D)Apps need Hybrid Timelines

This question of hybrid applications is one of bridging the differences in

trust assumptions between applications, especially, when it caters to

decentralized applications on one side and centralized ones on the

other, as in that case, the trust assumptions are not just different but

incompatible, that is to say, there seems to be an intrinsic

incompatibility of trust between these applications resulting from the

differing network topologies (centralized/decentralized) of power

and/as politics.

It is here that we see the relevance of the idea from a previous section

§4.2: “the question of trust is always also one of timing.” When we

superimpose this idea onto the current one (that of hybrid applications

as one of bridging the differences in trust assumptions of Web and

crypto) into a single image, we realize that: the question of hybrid

applications is one of time travelling but in a specific way; this is not

travelling within the same timeline (for that would be the case between

applications of compatible/interoperable trust topologies), rather that of

time travelling between incompatible timelines, while needing to

communicate between these disparate timelines.

Each application with its own timeline reflects the trust assumptions

(the topologies that enable those). From a computational perspective,

this translates to having not just a single sequence of before-after

relations on which the multiple applications' transactions can then be

mapped onto, instead multiple such sequences (at least one for each

application), many of which do not even align their before-after markers

(or index separators) with each other. That is, the transitions that make

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 36/41

up the transactions in each application do not always align in terms of

their before-after markers, making any attempt at time travel a

considerable design issue.

Fig 9. The Example of Three Timelines in Lamport’s 1987 paper, a timeline for

each process

This takes us back to Lamport’s inaugural paper (that introduced the

subject of distributed systems in computer science), as this mismatch

was precisely the challenge that separated distributed systems (that

Lamport wanted to study) from concurrent systems (that previously

Dijkstra, Hoare and others studied). Just as Lamport went from

improving the work of Dijkstra/Hoare on Concurrent Systems, what we

have with MEV (and specifically, STXN in our case) is the challenge of

going one step further from Lamport. We can do this by incorporating

Nakamoto's improvements on time modeling: in addition to the before-

after relationships for transaction ordering in Bitcoin (and later

Ethereum) offers, the Proof-of-Work (and later all other consensus

protocols in spirit, like that of Proof-of-Stake) makes the time plastic by

mandating the sync block by block instead of the continuous model of

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 37/41

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=30e83735eb72af97e7ab3ec7f0823b9a9ae5493c
https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf
https://lamport.azurewebsites.net/pubs/ghl.pdf
https://hal.science/hal-03162635/document

Lamport and all traditional BFT ones as well, since the blocktime offers

enough time to sync the gaps between the different before-after markers

of the multiple timelines (as not all nodes in the network will be on the

same timeline at all times). Our proposal here is to go one step further

building on Nakamoto’s sync-block-by-block-within-a-before-after-

sequence, by forcing the sync between the differing and incompatible

timelines to happen in MEV-time instead of waiting on blocktime.

Basically, we have to leverage MEV-time Oracles to ensure time travel

between systems that differ in their trust (and so timing) assumptions:

MEV-time Oracles to bridge Web and crypto (like between Ethereum

and other EVM chains). This is the design goal of Hybrid DApps as

Hybrid Timechains since each app comes its own timeline: syncing up

on the timing differences between the different trust topologies.

9. Challenges and Limitations

The first challenge of smart transactions is that they are non-trivial to

solve, requiring that someone computationally and possibly

interactively solve them, and then to submit their solution to the

network for inclusion. This means that sophisticated execution capacity

must be developed in order to facilitate smart transactions, which while

presented here in the form of the solver network, this functionality can

also conceivably be carried out by proposers, builders, or even smart

transactors themselves. Organizing this search infrastructure to most

efficiently meet the demands of smart transactions is expected to be an

ongoing challenge.

A second major challenge facing smart transactions is the gas-efficiency

of validation, another is the security engineering of validation. For

example, a transaction might require that one of its components is

included after expected adversarial transactions, however it may be

prohibitively expensive to check every intermediate transaction. For

another example, a transaction might want to validate counterfactual

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 38/41

https://pmg.csail.mit.edu/papers/osdi99.pdf

claims, but evaluating a lot of counterfactual traces might be

prohibitively expensive. In the future, we can imagine transactions

cheaply validating succinct zero knowledge proofs of properties that

would be expensive to prove directly.

Another set of challenges is associated with transaction solutions being

“stolen” from solvers by searchers, perhaps by block builders, or in

coordination with validators. This might violate transaction

expectations, and it will reduce the profitability of smart transactions

searchers/solvers. It is fundamental that only proposers themselves can

protect transactions against the risk of proposers equivocating in order

replay their execution, and therefore the separation of proposers from

transaction execution introduced by PBS poses a theoretical limit on the

achievable security of blockchain transactions.

Thus, the problem space of MEV, even and especially, as we reframe it as

a question of time, reveals the inherent political nature of the problem:

who decides what time it is now, under what regime do we organize

transactions, which transactions are to be considered valid, under

whose time are we operating? This is the politics of block production as

it changed miners to validators and now proposers with searchers

working to search the best bundles, along with the politics of trusted

builders.

Hence, it is vital to acknowledge that we must struggle against the ever

so pressing allure that a technical solution, no matter how multifaceted

and scalable, will put an end to a sociopolitical crisis. This means that

we must keep building the tech stack behind the smart transaction

infrastructure with never losing in sight the awareness that key to the

challenge we face is one of governance. Addressing MEV will also

always remain a community effort beyond the efforts of a single

protocol/team. This means what we need is a multidisciplinary effort

that aids in the technical innovations that smart transactions bring

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 39/41

https://unenumerated.blogspot.com/2017/02/money-blockchains-and-social-scalability.html
https://unenumerated.blogspot.com/2017/02/money-blockchains-and-social-scalability.html

forth, so we can foster effective mechanisms, ways, concepts, avenues,

and other such socio-political streams of research and intervention.

10. Conclusion

Through a simple gesture of turning the question of MEV from a purely

economic one to a horological one with chronophysical consequences,

we offer alternative architectures in addressing the issues with MEV: the

discovery of MEV-time has revealed new possibilities for near

immediate I/O and even time travel.

Transactions now encompass both spatial and temporal dimensions,

creating a verifiable "thenchain" alongside the already existing

"nowchain." This temporal distinction allows for onchain oracles,

termed MEV-time Oracles, without the same trust issues associated with

traditional (i.e, offchain) oracles by keeping all data interactions within

the same chain's timeline.

The spatial aspect is enabled with the virtualization of the mempools,

by having transactions held onchain (à la Laminator) rather than in

traditional prechain mempools. This introduces advanced lifecycle

management for transactions, such as with the Time Turner ,

transitions (which comprise transactions) can be executed based on

conditions that rely on future transitions, sending return values or

entire calls across from the future to the past. Solving smart

transactions is far from trivial, requiring a multidisciplinary approach

that encompasses both technical and governance challenges.

Building on the differences in the modes of time — temporality (past-

present-future) versus timing (before-after) — is essential for designing

effective time travel dynamics. Emphasizing the timing modality

ensures that transactions are executed in a logically coherent sequence,

respecting the causal consistency relationships between

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 40/41

transitions/events while being able to decide transitions based on future

ones.

Smart transactions pay MEV and other application specific fees to

searchers/solvers and to Third Party Searchers respectively, in exchange

for the search results in terms of the quality of the results. It in this

specific economic sense, that the infrastructure acts as a virtual

matching engine: in the way a search engine does, but one with a time

machine at its core, as the search is carried out combing through the

different timelines to find the best possible execution of the

transactions.

Smart Transactions builds on the mevolution of Nakamoto style

Timechains to Time Machines (post MEV), all verifiable and onchain.

08/11/2024, 17:33 Mevolution

localhost:3000/theory/white-paper 41/41

