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Abstract

Traditionally, Miner Extractable Value (MEV) has been viewed as a challenge,

where miners or validators exploit arbitrage opportunities through creative block

production techniques. The options have been to either combat MEV by limiting

opportunities or embrace it by introducing fairness into block production

politics. This paper explores a third approach: leveraging the concept of time in

blockchain transactions. By transitioning from a sequential model to a flexible

time model, we can engineer radical new transaction semantics. These new

spatio-temporal dimensions of MEV inspired transactions framework opens up

novel possibilities of building L1.5 technologies and hybrid Dapps by leveraging

MEV-time Oracles.

1. Introduction: MEV and Its Evolution
Traditionally, MEV has been thought of as a problem dealing with

miners/validators exploiting arbitrage opportunities by being creative in their

block production mechanisms and techniques. Currently, there exists only two

options broadly construed, either fight the MEV by creating ways to limit MEV

opportunities or to embrace it and create new ways of bringing back fairness in

the block production politics for it is but inevitable, the MEVolution is here. What

is underlying these options is the framing of greed once available becomes

irresistible. This makes it a design choice between greed versus fairness, how best

to strike the delicate balance, and how to introduce other forces in this picture so

as to enlighten the dark forest. These new forces come in the forms of



cryptoeconomic mechanisms that have been proposed, most of which, leveraging

the PBS and Flashbots research.

There is another way of looking at it. This is the Question and the Concept of

Time. Specifically, how it plays out in models of consensus, as is evident in the

original name given by Nakamoto for blockchain: timechain. MEV has opened up

the plasticity of time in Ethereum.

In this paper, we propose a solution to the double-spending problem using a

peer-to-peer distributed timestamp server to generate computational proof of

the chronological order of transactions.

— Nakamoto S., Bitcoin: A Peer-to-Peer Electronic Cash System, 2008

[Highlight by the authors]

The change in blockchain transactions' ordering and execution model from a

sequential one to one that reflects a flexible time, as exhibited and exposed by

MEV searchers, lets us imagine and engineer radical new transaction semantics.

Specifically, transactions can now validate values provided to them by searchers

(via transactions infrastructure), reverting when validation fails. Such

programmable atomicity (or semi-atomicity and its many variants) exemplify the

fact that blockchains are technologies of time.

For example, consider a "smart" transaction pattern where searchers provide

valid oracle values to a transaction or else the transaction reverts. This can be

used to implement parameterized function calls, allowing searchers to more

directly solve and search/optimize transactions. It can also be used to provide

signed data to transactions, including off-chain price information or additional

third-party transaction validation.

For another example, consider a pattern where searchers must provide values

from the future, under the logic that the transaction reverts if it finds a different

value when it finally arrives at this future point of its execution. This pattern is

leveraged by our transactions infrastructure (See §7) called the callbreaker ,

which has searchers front the return values of the callobjects  (aka internal



transactions) that are executed by the breaker as a bundle. It can also be

leveraged in the time turner , through which searchers front entire

callobjects  from the future.

Blockchain transactions exist in space and time. The former being the space in

the block it is included in, of the chain that such a block is further part of, of the

space of the validation logic that legitimizes it to be even considered by the

validators/proposers/blockbuilders for inclusion in the current block. The

temporalities of blockchain transactions can be expressed in the lifecycle of every

transaction in terms of the following three modalities:

Past Tense: Confirmed transactions permanently recorded on the blockchain. They

remain in the past frozen, impossible to be tampered with as are all things past, as

operating under the immutability logic of ever deepening cumulative confirmation by

consensus.

Future Tense: Pending/proposed transactions in the mempool awaiting inclusion in a

block. All transactions and requests for transactions once left the wallet and user apps

being broadcast node to node as they await to be picked up by

searchers/builders/proposers to be worked. In the mempool they remain as

potentialities for a future where they might be confirmed.

Present Tense: The transitional time between past and present when transactions are

being executed in an effort to confirm them onchain. This is the time when

transactions are being picked up, searched/solved, validated and bundled/sorted into

blocks by miners or validators/proposers.

As per Nakamoto consensus, the unwritten law of the present tense was that, as

long as they are valid transactions, a miner should give them priority for

inclusion based only on the amount of transaction fees they pay, informally

prohibiting other attempts to interact with the transactions as amounting to

tampering the sanctity of temporal purity. "Replace-by-fee" was a controversial

Bitcoin soft protocol change, allowing transactions that are in the mempool or

already in miners' blocks to be replaced by other mutually exclusive transactions

that pay higher fees. That could lead to miners reading the contents of the

transactions and selecting new transactions based on their preferred UTXO

update or worse leading to censorship. Miners had to act in a passive way, never



actively interacting with transactions, just follow the fee based allocation of

blockspace for valid transactions, adding no flavor of their own.

This assumption that miners were passive actors during transaction execution

changed for the first time with MEV on Ethereum: ETH miners started

interacting with the blockspace by manipulating the order of transactions, giving

preferential inclusion to low latency traders who were competing for arbitrage

and other trading opportunities by "tipping" or "bribing" miners directly for

inclusion. With MEV, miners transitioned from passive to an active mode in the

present tense modality of transaction lifecycle. MEV remains to be most radical

(change) departure in the temporality of transaction lifecycle in the life of the

"timechain" [Nakamoto]. Thus, we get two further delineations under the Present

Tense modality of our three transaction temporalities:

Present Passive: Transactions are executed without any significant third-party

interpretation of their internal or implicit semantics beyond validity and transaction

fees. This was the only mode of temporality as per Nakamoto Consensus.

Present Active: Transactions are executed after an extensive search over different

possible inclusions in different bundles with other third-party transactions, not simply

based on their own independent validity and transaction fees paid. In the case of

trades/swaps these bundles typically include the transactions of adversary traders, or of

the miner/proposer themselves. This mode of temporality was made possible solely due

to MEV.

Past Present Future

Passive Confirmed Tx Nakamoto Miners / Proposers in PBS Mempool Tx

Active BTC Scripts Validators carrying out MEV themselves Searchers

Table 1

2.1. Current A�empts To Fix The Timechain



MEV represents a major disruption in the temporality of blockchain transactions.

Analysts and engineers are trying to find solutions that will get rid of MEV or to

wind back the clock on blockchain transaction semantics. This is focused around

the framing that MEV resulted in the concentration of powers among and around

validators since it made them become the only actors to benefit from the dual

power of being able to be in the present tense and also in the active mode of

interacting with transactions. To mitigate this in an effort to ensure fairness,

Vitalik and Flashbots introduced a new set of actors, elaborating that of bundle

searchers into “builders” along with turning validators into what they are called

now “proposers” as is in the name: Proposer-Builder-Searcher.

In PBS, the powers of proposers (erstwhile validators) now supposed have been

reset back being only in the present tense (so present passive), as was the case

with Nakamoto consensus, by restricting proposers to only be able to engage via a

block builder auction. PBS leaves the proposers with neither the power to build

blocks nor to select/organize transactions, while the searchers/solvers are now

wholly responsible with the power to actively interact with transactions. So

leaving only builders and searchers as active participants but not present, as

actively interacting with transactions in a pre-chain way.

MEV, as an intervention with respect to the temporality and the timing of

blockchain transactions, has been largely ignored by the more prevalent rhetoric

of MEV being about trading profits/losses, greed, and fairness. Even when the

current dominant attempts at addressing the issues of MEV was about

decoupling the transaction temporalities via PBS, this aspect around time still

remains largely underdeveloped or rarely explicated in technical analytical

terms.

Temporality (about states) Timing (about relationships)

Past—Present—Future Before—After (and Now, not so much as the midpoint

insofar as it is the double negation: as neither before,

nor after)



Temporality (about states) Timing (about relationships)

Confirmed—BeingMined—

Mempool

Order of Transactions

Present creates the

Past/Future

Before-After creates the Now

Subjectivity

(there is no present tense

without a subject being

present)

Objective

(before-after relations are agnostic to subjective

experience)

Immutability Time Travel

Block (Re)-Ordering Transaction (Re)-Ordering

Table 2

Please note that we have been talking about two different notions as it regards to

time. The past, present and future tenses represent the modalities in the

transaction lifecycle. This is not to be confused with the time travel reference

made earlier when transactions and internal transactions make calls to the future

(within the same block/bundle) for return values and calls to be returned, and

this operates under the relationship of before-after (and now). So the two notions

are: past-present-future, and before-after-now. The former speaks of

temporalities, while the latter are notions of (time in terms) of timing, so we have

temporality versus timing. This is akin to the Hellenistic Greek notions of

Chronos versus Kairos.

(The differences between the notions of Temporality and Timing carries with it

significant similarities with McTaggart’s notion of A series versus B series as

explicated in his 1908 paper, “The Unreality of Time,” [source] in that only the A

series has tense as in a universe with subjects experiencing the time, while the B

series lacks any sense of tense as in a block universe.)

https://www.semanticscholar.org/paper/The-Unreality-of-Time-Mctaggart/dfc0a8aa4a26b11d32d2ebf3c265ac5bc4f713c8


3. MEV-Time and Cross-Time Transactions
What we get with the Present Active temporality of a transaction lifecycle, is that

finally EVM based infrastructures can now be in an interactive relationship with

transactions as they are under the confirmation process. This opens up realtime

operations for the first time in crypto, as realtime is the confluence of present and

active.

However, to be precise, there was always a case for Active mode of transaction

lifecycle in crypto but not in the full spectrum as MEV has opened up. This was

the case, where for example, Bitcoin scripts once included in the block, will later

on be offchain executed by whoever intends to claim the bitcoins associated with

that script, then sending the result in a transaction for it to be included for those

coins to be claimed/forwarded, making the active mode being possible but at a

later time of the initial transaction script being included in the chain, as also its

verification of having been executed at an earlier time than the inclusion in the

chain. There is also a similar decoupling of active from any present modality for

offchain computations that are verified later onchain, or with rollups. But the

change that MEV brought was the coming together of the active and the present,

which is referred to as realtime.

3.1. MEV-time > Blocktime

With MEV, we have realtime in terms of the temporalities of transaction lifecycle

(Chronos), as we have time travel with respect to the (timing as now) before-after

notion of transaction timing (Kairos). These two advancements in technologies of

time as the timechain, when put together results in « hypertime = realtime + time

travel ». We refer to this as MEV-time, or MEVt.

MEV represents an evolution in the way time operates in consensus protocols by

evolving from blocktime to MEV-time. Even with the limitations of having to wait

for blocktime for confirmation, interaction with the chain is now mid-blocktime

as well, as a result of hypertime.



Searchers can interact with transactions during MEV-time by introducing values,

updating oracle data, and performing operations within the transaction flow. This

interaction breaks the traditional atomicity of transactions, allowing for more

complex and adaptive behaviors. By leveraging MEV-time, transactions can

become aware of multiple possible futures and adjust their execution based on

the most favorable outcomes.

3.2. MEV-Time Oracles: Communicating
Across Time

Traditionally, information travels in space, moving between servers, nodes, client

endpoints, and so on. Oracles exist to facilitate such movement between

blockchains and the outside world, since all information within the chain must

be verifiable, oracles act as trusted portals for such movement in space. However,

with time travel, transactions can refer to values or calls from the future for their

own validation, This is information that is travelling no longer in space, as both

sides of the movement remain within the chain (even with the same block at this

development stage of our infrastructure). Rather the information is travelling

across time: since cross-time transactions do not leave the chain, they come with

the same degree of trust guarantees on both sides of source/destination. It is a

purely onchain movement of information but with different time horizons. Thus,

the terms of on versus off chain are no longer sufficient here, as they are spatial

metaphors — on is the space inside the chain as compared to off as outside that

space.

We need new terms to refer to movement of information across time but within

the same chain. This will be the case of an oracle communicating not between the

here and the there (being the case with traditional oracles), but between the now

and the then. How about nowchain and thenchain? How about cross-time

transactions instead of cross-chain transactions.



Since the information never leaves the chain, both sides of the here and the now

follow the same logic of verification that all onchain information must abide by.

Thus, this particular type of oracle is working across time, or if we call it, the

MEV-time Oracle. It does not suffer from the challenges of the traditional oracle

(i.e., the space oracle), that of the trust assumption. The information of the there

can be verified onchain by the now. MEV-time Oracles are onchain oracles.

To sum it up, we can say: it is onchain oracles that act as portals for cross-time

transactions by being a pathway for data to move between the thenchain and the

nowchain since such data comes with the same verification logic on both sides of

the movement.

4. Key Concepts
Key Concepts, or how to reframe existing blockchain concepts in horological

ways so we can apply them to our analysis of MEV, leveraging which we then

design a horological resolution to MEV.

4.1. Trust as Timing: Timechain design
insights

The question of trust is always also one of time (or, timing to be precise): if I can

go forward in time and always ensure that assertions are never broken, that such

a time travel acts as a compensation for the need to trust. What precedes and

remains inherent in the question of trust is the question about future. This comes

mostly in the form of uncertainty and how we deal with it: what will happen in

and as the future, what does the future hold for us in terms of the promises being

made in the past as we ask this question the present.

Since it remains impossible to escape our present (see §4.3, “when we time travel,

so does our present”), the question of trust can then be addressed when reframed

in terms of our ability to travel to a transition that come after the current one so

as to be able to report back to the current one. More specifically, this is time as



timing in terms of being the before-after relation, and not on temporality (that of

the past-present-future relationship). Timing is also the question of when exactly

does a transition happen or need to happen, for the need to fulfill an assertion,

thus trust assumptions as timing assumptions/assertions.

If we had a crystal ball to look into transitions that come after the current one

such that we could make assertions that will always eventually come true, we

would indeed inhabit a trustless universe. This is echoed in the theme of

trustlessness [“this is the first time we're trying a decentralized, non-trust-based

system”, Nakamoto] that Nakamoto inspired in all of us, as the rationale behind

the invention of Bitcoin. Thus, the term timechain which Nakamoto used to refer

to what we now call the blockchain seems in alignment to this logic of trust as a

question of time. It is in this sense that we can speak of the concept of

trustlessness in terms of timing under the logic of: to always eventually come

true. (In Lamport’s framework of distributed systems, the always-eventual aspect

is the liveness guarantee, and the coming-true is the safety guarantee [source])

Trusted third parties can then be framed as third parties that demand our time

(as patience) in order for us to be able to infer whether they end up holding

onto their promises (as an alternative to Szabo’s framing of “Trusted Third

Parties are Security Holes”, source). Thus, when we deem a service to be

untrustworthy, it is because over time it has kept failing at holding on to its

guarantees. In both cases, the need to trust can then be translated as the need

for the required time to pass, required for us to make the justifiable inference

on trustworthiness or not. This makes the time travel argument: that if by

some magic, we could peer into a later time from our vantage point in the

here and now, that inference could be made immediately. It is in this way that

time travel removes the need to trust — by replacing trust with facts from the

future travelling back to past for a veracity check — making our relationship

toward the service appear trustless. (more on this in §8.1)

In fact the replayability guarantee (inherent in the definition of blockchains)

states that if we go back in time and replay through all of the confirmed

http://p2pfoundation.ning.com/xn/detail/2003008:Comment:9493
https://www.cs.cornell.edu/fbs/publications/RecSafeLive.pdf
https://nakamotoinstitute.org/library/trusted-third-parties/


transactions exactly in the order they appear on the blockchain (block by

block), we will get the same resulting blockchain. Replayability is thus a

rationale centered around the conception of the block production being akin

to the ticking of a clock: as long as we bracket out the Leader Selection and

the Transaction Selection Logic, by just considering the confirmed

transactions as they appear on the block, each time we roll back the clock, we

get the exact same chain. This is a clock that shows the time of the day in

terms of the current block height, while also essentially leaving a trace (of

provenance) of all of the time it had shown/ticked (in terms of the confirmed

or past blocks — the “past tense” from §2). This is the time that is always and

ultimately linear, in that no forks are allowed, as all attempted forks

ultimately and always get collapsed into the singular/canonical chain (along

with the uncles as the traces of those forks that lost, which is the case with

some consensus protocols). Replaying is, thus, guaranteed to always and

forever produce the same exact blocks all over again every single time. In the

rhetoric of crypto, this is framed as trustlessness. This means creating a

system where guarantees are so fully enforced that our reliance on trust is

unnecessary for it to function as promised. This is largely made possible by

the replayability guarantee. Essentially, it mirrors a clockwork universe

through consensus mechanisms.

A similar argument can be made about veri�able computation, such that we

can have guarantees of what would happen if the computation was run

without actually having to run it. When a ZK Rollup produces the proof to be

anchored in the chain, verifying the proof onchain implies that the offchain

computation must have been run with the results as implicated in the

onchain proof, all of this, without the chain needing to actually re-run the

offchain computation in an onchain way. If an L1 had to run the original

computation that would defeat the main point of offchain and expensive

computation with cheap onchain verifiability. It is in this way that we can say

blockchains also represent technologies of time compression: time seems to

move faster in the L2 than in the L1 provided that the former can be



compressed enough to be squeezed in between the moments/ticks that make

up L1.

4.2. Time Travel Works On Timing and Never
on Temporality

When we mention "time travel," it is meant only in the way that time could be

represented in the before-after mode (i.e., timing), and not as the mode of

temporality (past-present-future). From a computational perspective, this means

that the time element of smart transactions is to be modelled as a data structure

of transitions/events such that they are ordered in a before-after relationship.

This translates to a ordered series of ‘when’ each smart transaction exists.

This reliance on timing is due to the fact that even with going back or forward in

time, one (the user, the transactor) can only and always remain in one's present.

Where one is in time, that is the present moment. There is no present without

there being a subject present. This is not a question of experience for even in

sleep, we are where are in time, we do not vanish from the timeline just because

we are asleep or absent minded. By presence, we mean physical presence,

psychological presence is besides the point here. The present, by being so,

remains inescapable for subjectivity or subjecthood. Where the subject, is when

the present is.

So when we time travel, so does our present. Travelling in time remains in terms

of temporality. Rather, it is implemented by changing the index of the before-

after series of happenings: transaction ordering in the current block being

produced, where a transaction belongs in a bundle/block, from where in the

current timeline is it expecting calls and returnvalues  as a condition for its

execution). This is an expression of timing and not of temporality. From a

computational perspective, this translates to reshuffling the ordering of

transitions that make up the transaction. What remains impossible via time travel

in smart transaction is reordering of blocks (aka a blockchain reorganization or a



reorg), for that would have been an exercise in time travel with respect to

transaction temporality.

(However, when we colloquially speak of going back to the past or the future, if

we reframe this with our current understanding, we are referring to the

past/future of someone else who is still in the timeline we left from, someone who

was in the same present as me before I left for the past/future. In fact, this

someone else usually happens to be not another person, rather a projection of

ourselves, as if a part of us is still there in the timeline I used to live in prior to my

time travel.)

4.3. Time Travel Does Not Break
Immutability

No time travelling transaction can go back beyond the current block, that is, to

one of the confirmed blocks. However, it can go forward to a block that is not

been confirmed, be it the current one in the middle of it being produced, or one

that is to come later, by having the transaction remain in an onchain waiting

station ready to be picked up by a Solver based on timing assumptions being true.

This is key to the rationale behind virtualizing the mempool, as is the case with

our infrastructure (see §7). This entails holding the mempool onchain rather than

the usual way of prechain mempool. This is carried out by storing the

new/pending transitions onchain. While waiting to be picked up is one aspect of

timing, the other one is also around locks and partial isolations for transactions

to be able to manage their side-effects — this is the logic behind atomicity, and to

be precise version of it, that of semi-atomicity. Atomicity remains fundamental as

a property for the safety of a transaction execution, even in the case of time

travelling transactions.

This means, with time travelling transactions, the infrastructure should be able to

change (such as, when deciding to commit a transition or to rollback -and-retry) a

before transition/event based on validating what comes after (returnvalues  or



calls), but must at all costs be barred from being able to change the past. Since the

past represents confirmed transactions, we would have to be able to reorder

confirmed blocks — that is definitely not conceptually possible and remains

technically impermissible by what we mean by and how we design our time travel

infrastructure. It is rather searchers reshuffling the before-after relationships of

transaction ordering towards optimizing the most MEV. In fact this is where we

see the great confluence of the blockchain immutability regime and the

replayability guarantee: the latter ensures that we can always go back to the past,

while the former prevents us from being able to change the past when we are in it.

And now with smart transactions, transactions can travel to before and after

places in the timeline to change the ordering of transactions being currently

solved.

This is how we resolve the paradox of immutability with respect to time travelling

transactions, since we:

can traverse back to past blocks

and replay the past (as replayability operates under temporality)

but never be able to change the past (as immutability operates under temporality)

yet we can change before-after relationships between transactions (this is time travel as

it operates under timing).

Thus, time travel happens with respect to timing (going back to a before or an

after, searchers reshuffling the ordering of transactions), while immutability is a

matter of temporality, in that the past/confirmed transaction can never changed

(Refer to Table 2). Therefore, contrary to popular opinion, time travel does not

break immutability.

Time Travel’s reliance on the before-after model is in line with Leslie Lamport’s

1978 inaugural work on distributed systems where he framed the question of

coordination as one of being able to synchronize around the differing before-after

sequences of the nodes of the network; this was his paper on logical clocks. This

reliance on timing over temporality as a design criteria is also reflected in

https://amturing.acm.org/p558-lamport.pdf
https://amturing.acm.org/p558-lamport.pdf


Nakamoto’s design of the “peer-to-peer distributed timestamp server” as stated

in the Bitcoin Whitepaper.

In this paper, we discuss the partial ordering defined by the "happened

before" relation, and give a distributed algorithm for extending it to a

consistent total ordering of all the events. This algorithm can provide a useful

mechanism for implementing a distributed system. We illustrate its use with

a simple method for solving synchronization problems. Unexpected,

anomalous behavior can occur if the ordering obtained by this algorithm

differs from that perceived by the user. This can be avoided by introducing

real, physical clocks. We describe a simple method for synchronizing these

clocks, and derive an upper bound on how far out of synchrony they can drift.

- Leslie Lamport, 1978, “Time, Clocks, and the Ordering of Events in a

Distributed System”

4.4. Cryptoeconomics of Time Travel

The logic behind the meme, "don't trust, verify", is one of collapsing the twin

sides of a different kind of time travel that what we discussed so far. We refer to

this as cryptoeconomic time travel (differentiating it from the time travel using

MEV oriented transaction reshuffling, that we discussed so far).

�. Trustlessness is ‘virtual’ time travel travel to the future. To trust x — is to have

the assurance that promises that x entails will be kept. But if we are able to

visit the future, we would not need to trust, for we would just be in presence

of the events happening or not, to verify if indeed it is trustworthy. Thus,

being able to free oneself from the burden of trust is as-if one is travelling to

the future, so no trust is needed, just direct evidence.

�. Veri�cation of a Proof is ‘virtual’ time travel to the past. But me verifying a

proof of x signifies that the x already exists/happened for the proof of it to be

generated/there. To be able to verify means that the proof is already there, so

the event for which the proof is a stand-in, as it already happened. It is as-if

https://nakamotoinstitute.org/library/bitcoin/


what the proof claims of what happened (what happened, captured as x) is

indeed true without me physically travelling to the past, but with the same

effect if I did, which is virtual time travel to the past.

In both cases of time travel described above, the future and the past are actual,

they are not virtual. However, the travel is not actual but virtual. No one (e.g., a

computer agent, a verification engine, an user, fraud checker) is physically

leaving the present moment, so as to vanish and reappear at a point in the past or

the future. Rather, it a movement in time by virtue of the cryptoeconomic setup,

by doing so results in the same effect of an actual time travel but without actually

doing so. This element of ‘acting as if,’ ‘by virtue of, ‘ ‘acting so but without doing

so’ brings in the aspect of virtuality in terms of the time travel to actual past and

actual future.

A major difference must be pointed out. Cryptoeconomic time travel happens on

the temporality register while the transaction reordering one is one of timing.

The former is possible in spite of the objections in §4.2 because it happens

virtually and not actually, while the latter is not a travel to past or future, but to

the before or after by way of reshuffling the before-after relationship in terms of

transactions ordering.

5. Design Rationale
Design Rationale, or on what principles and guidelines are we to build a time

machine on Ethereum.

5.1. TLDR
The Current Problem underlying MEV: Discovery of the « Present and Active » mode of

Consensus

Current Solution (a la PBS): Decoupling the Present from the Active, wrt Proposers and

Searchers bring responsible for each respectively

New Solution (a la STXN): « Time Travel » — Instead of The Decoupling, transactions

can validate across time, by leveraging Future Active modes of temporality. This is



MEV-time. Kairos (Timing) to rescue Chronos (Temporality).

5.2. Time Travel Infrastructure

The philosophy of smart transactions extends transaction semantics to improve

the ability of transactions to validate their execution. The basic approach is to

create a space and an interface where searchers and smart transactions can

interact, also allowing smart transactions to interact with each other across time.

Smart transactions infrastructure should be used by searchers to provide timely

and reliable information to transactions, information based on which

transactions can conditionally revert their own execution, and also those of all

transactions bundled with them. This information might include, for example,

future return values of future transactions, amounts of gas consumed, and oracle

values.

Consider a transaction designed to swap tokens. As its first criteria, it wants to

maintain a certain slippage protection: the transaction will search far and wide to

find enough hops between many other pairs to eventually settle such that it

results in the satisfaction of the acceptable slippage range, failing which, the

transaction will revert itself. As its second criteria, if the tokens to be swapped

operate under the conditions that adjust the execution based on realtime price

data from an oracle, then if the price moves unfavorably, the transaction can

automatically revert or adjust the swap parameters to minimize losses.

Thus, smart transactions infrastructure is to be designed in such a way that the

transactions manage their own lifecycle with the aim of ultimately satisfying the

constraints encoded in the transactions. This demands that transactions be able

to operate in MEV-time allowing transactions to

self-adjust in an interactive mode with the Searchers (as these transactions are waiting

to be confirmed for the current/next block)

decide whether to execute or revert by verifying truth conditions



The infrastructure should allow for transactions to be able to inspect neighboring

transactions within the same timeframe, or on the eventual outcomes from the

future (as long as within the MEV-time horizon, which is blocktime in most

cases), or on the information from the outside world (Oracles that run on MEV-

time instead once every block). “Smart” means being — able to adjust its

execution path, manage its lifecycle, — powered by MEV-time interactivity. Thus,

we need to design the underlying transaction infrastructure in such a way that it

facilitates interactivity.

5.3. Key Design Objectives:

�. Model Time as Timing (before-a�er relations) and not as Temporalities (Past-

Present-Future).

Principle: When a smart transaction exists is a question of where it is in the

sequence of before-after relationships of transitions/events.

Implementation: The time data structure must be able to unequivocally establish

the before-after sequence of transitions/events that make up the list of all smart

transactions on the system.

Example: The ordering of transactions in a bundle/block already reflects their

internal before-after relationships with respect to each other; this is also the index

for each transition, as also the ever-increasing nonce for every attempt at sending

transactions (the increasing aspect is what makes the after be at least one more

than the before).

�. Extend Transaction Semantics Over Transaction Execution

Principle: The extension of transaction semantics is a fundamental principle that

allows transactions to express conditions and preferences beyond the linear

execution of code.

Implementation: Leveraging MEV search, transactions can interact dynamically

with the context, making real-time adjustments based on the latest available I/O

and state changes.

Example: A transaction can be designed to execute only if the real-time price data

from an oracle falls within a specified range, ensuring optimal conditions are met

before execution.



�. Empowering Transactions to Trust-but-Verify

Principle: Ensures that if any transaction in a bundle is executed without

invalidation, all other transactions in the bundle are also executed successfully.

Implementation: Include verification steps within transactions to check the

validity of their conditions before execution. This minimizes the risk of fraudulent

or erroneous executions.

Example: A batch of transactions includes multiple token swaps. If one swap fails

the verification, the transaction reverts, but the other valid swaps proceed,

ensuring partial execution instead of complete failure.

�. Enabling Context Awareness in Transactions

Spatial Awareness: Awareness of the current state of the blockchain, including the

mempool and blockspace context. This involves understanding the status and

details of pending transactions and the state of the world outside the blockchain.

Implementation: Transactions are designed to adapt based on realtime data

from the blockchain and external sources, adjusting their behavior

accordingly.

Example: A transaction adjusts its gas price based on the current congestion in

the mempool, ensuring timely execution without overpaying.

Temporal Awareness: Awareness of past, present, and future states, allowing

transactions to validate values from the future or recontextualize present execution

based on past states.

Implementation: Transactions consider temporal factors, scheduling

execution based on anticipated future events or validating conditions from

past states.

Example: A transaction can be scheduled to execute at a specific future block

height or upon receiving a particular oracle update.

Always Be Retro-fitting Prophecies To Remain Fulfilled: Transactions should MEV-

timely verify their conditions and adapt to ensure they meet their intended

outcomes, even as the blockchain state evolves.

Implementation: Embed adaptive logic within transactions to MEV-timely

check and adjust conditions to align with desired outcomes.

Example: A transaction designed to trigger an automated market maker

(AMM) adjustment MEV-timely checks oracle data and adjusts parameters to

ensure market alignment.



�. Turning Transactions into (Virtual) Programs or Autonomous Entities / Blurring

the Boundaries Between Transactions and Contracts

Principle: Transactions are no longer static instructions but dynamic entities that

can adapt to the blockchain's state (current and future state) and external

information.

Implementation: Transactions incorporate conditional logic and verification steps,

enabling them to function autonomously and interact with multiple contracts and

data sources.

Example: A transaction can include logic to check multiple conditions, interact

with various smart contracts, and trigger additional actions based on outcomes,

similar to a smart contract's functionality.

6. Introducing Smart Transactions
Smart Transactions are Self-Adjusting and Context-Aware:

They self-adjust their performance based on assertions and performance guarantees to

be strictly enforced.

They adapt to their environment, reacting to various conditions and contexts to

optimize execution.

They will be more than just programmable; they will "know" their surroundings and

adjust accordingly.

They are supported by an underlying layer of third party searchers that provide

compute and storage services (leveraging legacy Web services frameworks) — both

reducing the liability for service provider (as they are not real providers but extract

value through smart transaction interactions with external third parties specific to

domains), but also and more importantly, provide services that can be leveraged

through API connections between itself and the Solvers (creating links to offchain

services for hybrid apps in the future).

Smart Transactions Time Travel in Blockchain: The concept of allowing

transactions to borrow from future states to optimize current outcomes. The

lifecycle of a transaction can now include temporal claims, such as specific

ordering requirements or constraints. This requires robust validation

mechanisms to ensure that future states can be reliably accessed and utilized (See

§ 7.2).

https://vitalik.eth.limo/general/2022/12/05/excited.html#hybrid-applications


Example Scenarios:

Flash Loans: A user borrows funds, executes a trade, and repays the loan within a single

transaction, leveraging future profits for current operations.

Zero Capital Trading: Transactions utilize future gains to execute trades without

needing initial capital.

Some of the Key Features are:

Scheduled Transactions: Plan and execute transactions in the future, considering

dependencies on other events or on the outcomes of previous transactions.

Just-In-Time Liquidity: Access funds precisely when needed, reducing the need for

large reserves. Dynamic provision of liquidity using smart contracts that awaken based

on predefined conditions. Solvers provide liquidity by preempting race conditions and

ensuring advantageous transaction placements.

Automated Operations: Implement schedulers for periodic payments, contract

renewals, and other time-dependent actions.

Asynchronous Execution: Handle values not yet computed at the time of transaction

execution, interacting intelligently with anticipated future states.

Oracle Integration: Access to execution traces and MEV-time oracles for atomic pre-

confirmations, enhancing transaction security.

Compatibility: Designed to work with the existing Ethereum Virtual Machine

(EVM) and infrastructure, including Flashbots bundle standards.

7. The Smart Transaction Infrastructure
Alice wants to swap tokens, ensure minimal slippage and fast turnaround. Alice

initiated her transaction by sending her request to the Laminator . The

Laminator  stored it onchain, acting as a virtual mempool. Its job was to provide

spatial awareness. It understood the current state of the blockchain, including the

status of all pending transactions. The transaction is now ready to be picked up

by the Solver.



Fig 1. Smart Transaction flow, simplified

With respect to the Laminator's virtual mempool, Alice's transaction gets broken

down by the wallet (or the equivalent frontend application used) into smaller

individual transitions that make up the entire transaction. These are known as

CallObjects , or internal transactions. Each CallObject  represents a specific

part/transition of the transaction, such as checking the token price, verifying

account balances, or executing the swap itself.

The CallBreaker  interacted with the CallObjects , verifying the truth

conditions  for each one. For instance, before executing the token swap, the

CallBreaker  would verify that « the token price was within the acceptable range

specified by Alice » (being one of the truth conditions ). If any condition was

not met, the CallBreaker  would halt the process, preventing any unintended or

malicious actions.

7.1. Avoiding The Paradoxes of Time Travel

Any infrastructure that leverages time travel must have the capacity to handle

paradoxes around changing events/transitions that further invalidate other such

events/transitions which could then lead to invalidating the call from which the

time travel was initiated. This is another form of the classic Grandfather Paradox.

In order to avoid this, we use Deutsch’s solution around “causal consistency

check” [“Closed Timelike Curves Make Quantum and Classical Computing

Equivalent”, source]. This is the logic: upon return from the after/before

transition, enforcing a causal consistency check as a default for any commitment

on the call execution to be considered final, failing which, causes a rollback

followed by trying again with a different timeline such that eventually no such

causal consistency checks fail.

Transactions with Temporal Awareness: 𝑇𝑖 = (𝐶𝑖, 𝑡𝑖)

𝐶𝑖: Conditions.

https://arxiv.org/abs/0808.2669


𝑡𝑖: Logical times.

Oracle Function: 𝑂(𝑡) = 𝐷

Example: Time Traveling Token Swap Transaction with Causal Consistency Check

�. Initial Transaction De�nition:

𝑈ser initiates the 𝑇ransaction.

𝑈 → 𝑇init

Alice de�nes the transaction to swap 100 X tokens with a maximum

acceptable price of 50 USDC per token at a future date.

𝑇init = SWAP 100 X tokens in the future at 𝑡𝑓𝑢𝑡𝑢𝑟𝑒,Max Price = 50 USDC

�. Storage and Spatial Awareness: 𝐿aminator (virtual mempool) stores the

transaction onchain, providing spatial (à la blockspace) awareness:

𝐿(𝑇init) → 𝑇store

Stored transaction with conditions: 𝑇store = 𝑇𝑖, 𝐶𝑖

�. 𝑆olver and Sequential Execution: Solver pulls the transaction sequentially for

execution (could be at a later block based on temporal conditions: 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 ).

𝑆(𝑇store) → 𝑇exec

�. 𝐸xecution and 𝑉eri�cation: Transaction is executed and verified to check if

conditions are met.

𝐸(𝑇exec)

𝑉(𝑇exec) → {True, False}

�. Interaction with Time:

i. Check Past Conditions: Oracle provides historical data: 𝑂(𝑡past) = 45 USDC

Condition met as 45 ≤ 50.

ii. Check Future Conditions: Oracle provides future data: 𝑂(𝑡future) = 48 USDC

Condition met as 48 ≤ 50.



Past and future conditions are 𝑉erified using MEV-Time Oracles.

𝑉(𝐶past, 𝑡past) → 𝑂(𝑡past) = 𝐷past

𝑉(𝐶future, 𝑡future) → 𝑂(𝑡future) = 𝐷future

�. Causal Consistency Check: Ensure the transaction does not create paradoxes:

by ensuring that the future condition does not invalidate the past condition.

𝑉(𝑇exec) = True iff 𝑇future maintains 𝐶past

This involves finding a fixed point where the state remains consistent over

time.

Find 𝑥 such that 𝑓(𝑥) = 𝑥

�. Transaction Completion: If all conditions are met and causal consistency

constraint is maintained, the transaction is considered completed (i.e., ready

to be submitted for inclusion in the block, or an equivalent mechanism

depending on the specifics of the confirmation logic of the chain). Otherwise,

rollback and try again.

𝑇exec → 𝑇complete

7.2. The Smart Transaction Lifecycle

As the LaminatedProxy  held the transaction onchain, and the CallBreaker

verified the conditions, the CallObjects  interacted with each other across time.

This dynamic interaction was orchestrated through the concept of MEV-time,

allowing transactions to adapt and respond in hypertime (i.e., to both real-time

data and future states as well).

The CallObjects  would query oracles for the latest price data, check gas fees,

and ensure that all parts of the transaction aligned perfectly. They communicated

seamlessly, adjusting their execution paths based on the information they

received.

Once all conditions were verified and optimal conditions were met, the

CallBreaker  would give the green light: the Laminator  releases the



transactions from the virtual mempool, and the CallObjects  execute their

tasks. If the Solvers actually optimize the transaction’s capital performance,

Alice's token swap would be completed seamlessly, with minimal slippage and

guaranteed timing.

Fig 2. Smart Transaction lifecycle



7.2.1. Example Work�ow for a Token Swap with Conditional Execution Alice wants

to swap tokens under specific conditions. She pushes her transaction calls to the

LaminatedProxy , which includes an assertion that the solver must call a

function checkBalance()  to verify the trade conditions. The solver, Bob, then

executes these calls, ensuring that Alice's conditions are met before completing

the trade.

�. Transaction Queuing: Users push a series of CallObjects  (aka internal transactions)

to the LaminatedProxy  with specified conditions. For example, a user might queue a

transaction to swap tokens only if certain price conditions are met.

�. Transactions Stored Onchain: The proxy stores the internal transactions associated

with trade execution along with other internal transactions associated with

conditions/assertions.

�. Verification and Execution: The LaminatedProxy  holds these transactions until their

specified conditions are satisfiable by the smart transactions solvers. The CallBreaker

executes the calls and ensures their integrity by reverting and invalidating the bundle if

1) a call fails or if 2) a call doesn’t return the expected return value. If the bundle is

executed fully, then all included internal transactions’ revert-conditions must have

been satisfied.

Fig 3. Alice swaps tokens with Bob as Solver

Diagram Description:



�. Alice: Initiates a transaction.

�. Laminator : Manages transactions and uses push()  to forward the transaction to the

LaminatedProxy .

�. LaminatedProxy : Acts as an intermediary, handling calls from users and directing

them appropriately.

�. Bob: Checks conditions and states within the system.

�. CallBreaker : Verifies conditions and safeguards the integrity of the transaction flow.

Interacts with Bob’s verification step as a final check and authorization step before the

transaction is executed.

Flow:

Alice’s call to the LaminatedProxy  includes a transfer of 10 Token A.

The transaction asserts that Bob will make a future call to checkBalance() .

Bob pulls calls from the LaminatedProxy  with verify()  to ensure the conditions are

met.

The CallBreaker  interacts with Bob’s verification as a final check before the

transaction is executed.

7.3. The Time Turner  Mechanism

A mechanism that allows for checking and acting upon conditions in both the

past and the future. Enables interaction with future states for temporal flexibility

by embedding entire calls from the future. Basically, the setup ensures that smart

transactions consider both historical and future states before execution,

providing a robust mechanism for temporally aware condition-based transaction

management.

This is the Time Turner  high-level flow:

�. EVM Execution Direction:

i. Check if in the past: A step to verify past conditions.

a. The Time Turner  checks if the condition is met in the past.

ii. First make a call to the past, then make call to the future: A sequential step where

past conditions are validated before future conditions.



a. If the condition in the past is met, it proceeds to execute actions related to the

past.

b. The sequential call step first makes a call to the past and then to the future.

iii. Check if in the future: A step to verify future conditions.

a. Finally, the future condition is checked before executing future-related

actions.

�. Smart Transaction Execution Direction:

This subgraph represents the ordered execution of transactions within the smart

contract system.

Each step (marked with numbers 1 to 5) represents a direction in the transaction

execution sequence/flow.

Fig 4. Time Turner  High-level flow example

7.3.1. Detailed Breakdown of The Time
Turner  Lifecycle



1. Initial State (Push to Past)

2. Sequential Calls

3. Future State (Push to Future)

�. Initial State (Push to Past)

User Action: The user initiates a transaction sequence and pushes it to the

LaminatedProxy .

Condition Check: This sequence includes a condition to be checked in the past

facilitated by the Time Turner .

Steps:

a. Push the first transaction to check if the condition in the past is met.

b. If the condition is met, proceed to « do stuff in the past ».

Fig 5. Pushing to Past: Initial State of Time Turner

�. Sequential Calls

Validation: After validating the past condition, the next step involves making a call

to the past first, followed by a call to the future.

Steps:

a. First make a call to the past using the Time Turner  to validate conditions.

b. Then make a call to the future to ensure future conditions are set up correctly.



Fig 6. Sequential Calls in Time Turner

�. Future State (Push to Future)

Final Check: The final sequence involves checking a condition in the future and

executing actions based on this future state.

Steps:

a. Push the second transaction to check if the condition in the future is met.

b. If the condition is met, proceed to « do stuff in the future ».



Fig 7. Push to Future in Time Turner

8. Beyond MEV: Smart DApps
The design of the smart transaction infrastructure must be aligned with respect

to the applications that it will be catering to. Thus, a careful consideration of the

application layer is essential for a design that is adaptable.

Currently, all of the innovations at addressing MEV, in spite of the high promises,

ultimately almost always exclusively end up being deployed to build better and

fancier services for swaps. It usually comes wrapped up with the framing of a

DEX but at the base of it all, it is still a swap, it still deals with liquidity provision

or order books or questions of matching efficiently counterparties. It is tragic and

comic at the same time, that behind all of the sophistication of computer science

and the complexities of cryptoeconomics, it is all at the service of: how to have

slippage protection and low gas fees for swapping tokens. In fact, to look at the

broader class of applications of and in crypto, swaps, staking, wallets,

attestations, and the various variations of these and with each other, cover all of

the use cases that are currently the most used. This is a stark contrast with today’s

dominant application usage patterns. This is where our approach differs:



�. A (smart) transaction is not always reducible to a swap. (For example, querying a

database or uploading a file to cloud storage are transactional operations but not swaps)

�. Solvers must be solving real life problems (including but not limited to swaps)

�. MEV-time Oracles makes syncing I/O much more immediate than the previous limit of

blocktime.

Solvers, optimizing for MEV, prioritize transactions that can be easily verified and

yield high returns. Swaps, with their clear input-output relationships, are ideal

candidates for this optimization. This dynamic has led to an ecosystem where

most onchain operations are swaps, sidelining other potential uses of blockchain

technology.

Unless a solver also can solve real world problems, like that of finding the most

efficient route from Point A to Point B (such as for building a taxi hailing cab

onchain), then solvers are only left with solving one task: (capital efficient) swaps.

What prevents solvers to provide these other services is the trust assumption

required behind these. But with swaps, we can establish objective functions to

achieve capital efficiency in ways we can prove the veracity of the auction

mechanism used, making it best suited to trust-minimized applications.

This is a careful design choice we make here:

�. Rather than look for a zero trust use case, we look for designing around applications

that can be decomposed into its many aspects, some of which can be made trustless

within acceptable levels. Each of these parts would act in the form of microservices

based third party searchers to provide services.

�. MEV-time allows for anchoring trust points mid block instead of the previously

possible one of the blocktime being the limit where anything that is beyond L1 (L2 and

more) can be anchored, and the same for oracles for outside world communications.

Instead with MEV-time anchoring of computations that can be in an interactive mode

with the chain in almost realtime (à la just-in-time), or with MEV-time Oracles for

outside world communications. We refer to this as L1.5

�. Smart DApps that are a hybrid leveraging the benefits of both crypto and Web by having

the third party searchers sit in between the two worlds.

Microservices based virtual service provider that anchor its I/O (such as, by co-

signing a hash of I/O data to have it MEV-timestamped) with respect to the chain



in MEV-time — that is the approach toward building hybrid apps.

8.1. Third Party Searchers

Third Party Searchers (TPS) bridge the gap between Web and crypto by offering

services that enhance smart transactions. These services include HTTPS

connections to send/fetch data on demand, off-chain services of web hosting, and

transaction relaying. This is the aspect of the smart transaction infrastructure

that leverages services across chains as also connecting beyond blockchains

insofar as the trust assumptions — when leaving the home chain, especially when

it relates to non-crypto service endpoints — can be justifiably compensated with

respect to the capital benefits from such scale for all stakeholders involved. This

would entail domain specific design and deployment of complex incentive

schemes that can ensure acceptable levels of honesty across the stakeholders.

TPSs provide services via API connections, enabling smart transactions to

leverage Web services for future hybrid applications. There could be multiple

TPSs providing similar services in competition with each other, such that they

are in a staked service layer marketplace, where if any provider gets caught

providing faulty service could be punished. However, TPSs are not real providers

but extract value through interactions with external third parties, reducing their

liability.

They operate by making API endpoints where a HTTPS query is replied with a

JSON object, such that the HTTPS Session and the crypto transaction lifecycle

can be mutually incentivized. They are a bridge between Web and crypto, made

possible largely due to the discovery of MEV-time, since it opened the possibility

of I/O and onchain verifiability that does not have to wait for blocktime but can

sync immediately between the worlds of crypto and Web. This opens up the

possibility of building Hybrid DApps that leverage services between these worlds.

Ethereum [...] also opens the door to whole new kinds of applications that

have never been seen before.



— ethereum.org on the WayBackMachine from 2014.

8.2. Hybrid (D)Apps need Hybrid Timelines

This question of hybrid applications is one of bridging the differences in trust

assumptions between applications, especially, when it caters to decentralized

applications on one side and centralized ones on the other, as in that case, the

trust assumptions are not just different but incompatible, that is to say, there

seems to be an intrinsic incompatibility of trust between these applications

resulting from the differing network topologies (centralized/decentralized) of

power and/as politics.

It is here that we see the relevance of the idea from a previous section §4.2: “the

question of trust is always also one of timing.” When we superimpose this idea

onto the current one (that of hybrid applications as one of bridging the

differences in trust assumptions of Web and crypto) into a single image, we

realize that: the question of hybrid applications is one of time travelling but in a

specific way; this is not travelling within the same timeline (for that would be the

case between applications of compatible/interoperable trust topologies), rather

that of time travelling between incompatible timelines, while needing to

communicate between these disparate timelines.

Each application with its own timeline reflects the trust assumptions (the

topologies that enable those). From a computational perspective, this translates

to having not just a single sequence of before-after relations on which the

multiple applications' transactions can then be mapped onto, instead multiple

such sequences (at least one for each application), many of which do not even

align their before-after markers (or index separators) with each other. That is, the

transitions that make up the transactions in each application do not always align

in terms of their before-after markers, making any attempt at time travel a

considerable design issue.



Fig 8. The Example of Three Timelines in Lamport’s 1987 paper, a timeline for each process

This takes us back to Lamport’s inaugural paper (that introduced the subject of

distributed systems in computer science), as this mismatch was precisely the

challenge that separated distributed systems (that Lamport wanted to study)

from concurrent systems (that previously Dijkstra, Hoare and others studied).

Just as Lamport went from improving the work of Dijkstra/Hoare on Concurrent

Systems, what we have with MEV (and specifically, STXN in our case) is the

challenge of going one step further from Lamport. We can do this by

incorporating Nakamoto's improvements on time modeling: in addition to the

before-after relationships for transaction ordering in Bitcoin (and later

Ethereum) offers, the Proof-of-Work (and later all other consensus protocols in

spirit, like that of Proof-of-Stake) makes the time plastic by mandating the sync

block by block instead of the continuous model of Lamport and all traditional

BFT ones as well, since the blocktime offers enough time to sync the gaps

between the different before-after markers of the multiple timelines (as not all

nodes in the network will be on the same timeline at all times). Our proposal here

is to go one step further building on Nakamoto’s sync-block-by-block-within-a-

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=30e83735eb72af97e7ab3ec7f0823b9a9ae5493c
https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf
https://lamport.azurewebsites.net/pubs/ghl.pdf
https://hal.science/hal-03162635/document
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://pmg.csail.mit.edu/papers/osdi99.pdf


before-after-sequence, by forcing the sync between the differing and

incompatible timelines to happen in MEV-time instead of waiting on blocktime.

Basically, we have to leverage MEV-time Oracles to ensure time travel between

systems that differ in their trust (and so timing) assumptions: MEV-time Oracles

to bridge Web and crypto (like between Ethereum and other EVM chains). This is

the design goal of Hybrid DApps as Hybrid Timechains since each app comes its

own timeline: syncing up on the timing differences between the different trust

topologies.

9. Challenges and Limitations
The first challenge of smart transactions is that they are non-trivial to solve,

requiring that someone computationally and possibly interactively solve them,

and then to submit their solution to the network for inclusion. This means that

sophisticated execution capacity must be developed in order to facilitate smart

transactions, which while presented here in the form of the solver network, this

functionality can also conceivably be carried out by proposers, builders, or even

smart transactors themselves. Organizing this search infrastructure to most

efficiently meet the demands of smart transactions is expected to be an ongoing

challenge.

A second major challenge facing smart transactions is the gas-efficiency of

validation, another is the security engineering of validation. For example, a

transaction might require that one of its components is included after expected

adversarial transactions, however it may be prohibitively expensive to check

every intermediate transaction. For another example, a transaction might want to

validate counterfactual claims, but evaluating a lot of counterfactual traces might

be prohibitively expensive. In the future, we can imagine transactions cheaply

validating succinct zero knowledge proofs of properties that would be expensive

to prove directly.

Another set of challenges is associated with transaction solutions being “stolen”

from solvers by searchers, perhaps by block builders, or in coordination with



validators. This might violate transaction expectations, and it will reduce the

profitability of smart transactions searchers/solvers. It is fundamental that only

proposers themselves can protect transactions against the risk of proposers

equivocating in order replay their execution, and therefore the separation of

proposers from transaction execution introduced by PBS poses a theoretical limit

on the achievable security of blockchain transactions.

Thus, the problem space of MEV, even and especially, as we reframe it as a

question of time, reveals the inherent political nature of the problem: who

decides what time it is now, under what regime do we organize transactions,

which transactions are to be considered valid, under whose time are we

operating? This is the politics of block production as it changed miners to

validators and now proposers with searchers working to search the best bundles,

along with the politics of trusted builders.

Hence, it is vital to acknowledge that we must struggle against the ever so

pressing allure that a technical solution, no matter how multifaceted and

scalable, will put an end to a sociopolitical crisis. This means that we must keep

building the tech stack behind the smart transaction infrastructure with never

losing in sight the awareness that key to the challenge we face is one of

governance. Addressing MEV will also always remain a community effort beyond

the efforts of a single protocol/team. This means what we need is a

multidisciplinary effort that aids in the technical innovations that smart

transactions bring forth, so we can foster effective mechanisms, ways, concepts,

avenues, and other such socio-political streams of research and intervention.

10. Conclusion
Through a simple gesture of turning the question of MEV from a purely economic

one to a horological one with chronophysical consequences, we offer alternative

architectures in addressing the issues with MEV: the discovery of MEV-time has

revealed new possibilities for near immediate I/O and even time travel.

https://unenumerated.blogspot.com/2017/02/money-blockchains-and-social-scalability.html
https://unenumerated.blogspot.com/2017/02/money-blockchains-and-social-scalability.html


Transactions now encompass both spatial and temporal dimensions, creating a

verifiable "thenchain" alongside the already existing "nowchain." This temporal

distinction allows for onchain oracles, termed MEV-time Oracles, without the

same trust issues associated with traditional (i.e, offchain) oracles by keeping all

data interactions within the same chain's timeline.

The spatial aspect is enabled with the virtualization of the mempools, by having

transactions held onchain (à la Laminator ) rather than in traditional prechain

mempools. This introduces advanced lifecycle management for transactions,

such as with the Time Turner , transitions (which comprise transactions) can be

executed based on conditions that rely on future transitions, sending return

values or entire calls across from the future to the past. Solving smart

transactions is far from trivial, requiring a multidisciplinary approach that

encompasses both technical and governance challenges.

Building on the differences in the modes of time — temporality (past-present-

future) versus timing (before-after) — is essential for designing effective time

travel dynamics. Emphasizing the timing modality ensures that transactions are

executed in a logically coherent sequence, respecting the causal consistency

relationships between transitions/events while being able to decide transitions

based on future ones.

Smart transactions pay MEV and other application specific fees to

searchers/solvers and to Third Party Searchers respectively, in exchange for the

search results in terms of the quality of the results. It in this specific economic

sense, that the infrastructure acts as a virtual matching engine: in the way a

search engine does, but one with a time machine at its core, as the search is

carried out combing through the different timelines to find the best possible

execution of the transactions.

Smart Transactions builds on the mevolution of Nakamoto style Timechains to

Time Machines (post MEV), all verifiable and onchain.


